Chào các bạn! Vì nhiều lý do từ nay Truyen2U chính thức đổi tên là Truyen247.Pro. Mong các bạn tiếp tục ủng hộ truy cập tên miền mới này nhé! Mãi yêu... ♥

chapter 2

Chapter 2:

7.     

           a.   The closing price today is $74.59, which is $0.17 higher than yesterday’s 

                price.  Therefore, yesterday’s closing price was: $74.59 – $0.17 = $74.42 

           b.   You could buy: $5,000/$74.59 = 67.03 shares 

           c.   Your annual dividend income would be 1.20 % of $5,000, or $60. 

            d.   Earnings per share can be derived from the price-earnings (PE) ratio. 

                   Price/Earnings = 16 and Price = $74.59 so that Earnings = $74.59/16 = 

                   $4.66    

8.    a.   At t = 0, the value of the index is: (90 + 50 + 100)/3 = 80 

                At t = 1, the value of the index is: (95 + 45 + 110)/3 = 83.3333 

                The rate of return is: (83.3333/80) – 1 = 4.167%

           b.   In the absence of a split, stock C would sell for 110, and the value of the 

                index would be: (95 + 45 + 110)/3 = 83.3333    

                After the split, stock C sells at 55.  Therefore, we need to set the divisor 

                (d) such that: 

                           83.3333 = (95 + 45 + 55)/d…..d = 2.340 

           c.   The rate of return is zero.  The index remains unchanged, as it should, 

                since the return on each stock separately equals zero.   

9.     a.   Total market value at t = 0 is: (9,000 + 10,000 + 20,000) = 39,000 

                Total market value at t = 1 is: (9,500 + 9,000 + 22,000) = 40,500 

                Rate of return = (40,500/39,000) – 1 = 3.85% 

           b.   The return on each stock is as follows: 

                           Ra = (95/90) – 1 = 0.0556 

                          Rb = (45/50) – 1  = –0.10 

                           R c = (110/100) – 1 = 0.10 

                           The equally-weighted average is: [0.0556 + (-0.10) + 0.10]/3 = 

                           0.0185 = 1.85% 

10. The after-tax yield on the corporate bonds is: [0.09 x (1 – 0.30)] = 0.0630 = 

     6.30% 

     Therefore, the municipals must offer at least 6.30% yields. 

11.     a.   The taxable bond.  With a zero tax bracket, the after-tax yield for the 

                taxable bond is the same as the before-tax yield (5%), which is greater 

                than the yield on the municipal bond.

          b.   The taxable bond.  The after-tax yield for the taxable bond is: 

                0.05 x (1 – 0.10) = 4.5% 

          c.   You are indifferent.  The after-tax yield for the taxable bond is: 

                0.05 x (1 – 0.20) = 4.0% 

                The after-tax yield is the same as that of the municipal bond. 

          d.   The municipal bond offers the higher after-tax yield for investors in tax 

                brackets above 20%. 

12. The equivalent taxable yield (r) is: r = rm/(1 – t) 

          a.   4.00% 

          b.   4.44% 

          c.    5.00% 

          d.   5.71% 

13.     a.   The higher coupon bond 

          b.   The call with the lower exercise price 

          c.   The put on the lower priced stock 

14.   a.   The December maturity futures price is $2.3375 per bushel.  If the contract 

                closes at $2.15 per bushel in December, your profit / loss on each contract 

                (for delivery of 5,000 bushels of oats) will be: ($2.15 - $2.3375) x 5000 = 

                $937.50 loss

          b.   There are 3,907 contracts outstanding, representing 19,535,000 bushels of 

                oats.

15.   a.   Yes.  As long as the stock price at expiration exceeds the exercise price, it 

             makes sense to exercise the call.   

                           Gross profit is: $101 - $$ 95 = $6 

                           Net profit = $6 – $ 6.50 = $0.50 loss 

                           Rate of return = -0.50 / 6.50 = - .0769 or 7.69% loss

  b.   Yes, exercise.   

                           Gross profit is: $101 - $$ 90 = $11 

                           Net profit = $11 – $ 6.50 = $4.50 gain 

                           Rate of return = 4.50 / 6.50 = 0.6923 or 69.23% gain 

   c.   A put with exercise price $95 would expire worthless for any stock price 

                equal to or greater than $95.  An investor in such a put would have a rate 

                of return over the holding period of –100%.  

16. There is always a chance that the option will expire in the money.  Investors will 

     pay something for this chance of a positive payoff. 

17.  

                 Value of call                          Initial Cost           Profit  at expiration 

a.             0                                                        4                -4

b.             0                                                        4                -4

c.             0                                                        4                -4

d.             5                                                        4                 1

e.             10                                                      4                 6

                Value of put                          Initial Cost           Profit   at expiration 

                a.             10                    6                 4 

                b.             5                     6                -1 

                c.             0                     6                -6 

                d.             0                     6                -6 

                e.             0                     6                -6 

  CHAPTER 5:

1.   V(12/31/2007) = V(1/1/1991) × (1 + g)7  = $100,000 × (1.05)  = $140,710.04 

2.   i and ii.  The standard deviation is non-negative. 

3.   c.   Determines most of the portfolio’s return and volatility over time. 

4.   E(r) = [0.3 × 44%] + [0.4 × 14%] + [0.3 × (–16%)] = 14%                       

        σ^2  = [0.3 × (44 – 14)^2 ] + [0.4 × (14 – 14)^2 ] + [0.3 × (–16 – 14) ^2] = 540 

          σ2 = 23.24% 

     The mean is unchanged, but the standard deviation has increased. 

5.  a.   The holding period returns for the three scenarios are:

                     Boom:           (50 – 40 + 2)/40 = 0.30 = 30.00% 

                     Normal:         (43 – 40 + 1)/40 = 0.10 = 10.00% 

                     Recession: (34 – 40 + 0.50)/40 = –0.1375 = –13.75% 

                     E(HPR) = [(1/3) × 30%] + [(1/3) × 10%] + [(1/3) × (–13.75%)] =  8.75% 

   σ^2 (HPR) = [(1/3) × (30 – 8.75)^2  ] + [(1/3) × (10 – 8.75)^2  ] + [(1/3) × (–13.75 –  8.75)^2 ]    = 319.79 

             σ =      319.79 = 17.88%

           b.   E(r) = (0.5 × 8.75%) + (0.5 × 4%) = 6.375% 

                σ = 0.5 × 17.88% = 8.94% 

                                                                                                   2

6.   Investment 3.  For each portfolio: Utility = E(r) – (0.5 × 4 × σ  ) 

                 Investment            E(r)              σ              U 

                        1              0.12            0.30         -0.0600 

                        2              0.15            0.50         -0.3500 

                        3              0.21            0.16          0.1588 

                        4              0.24            0.21          0.1518 

     We choose the portfolio with the highest utility value. 

7.   Investment 4. When an investor is risk neutral, A = 0 so that the portfolio with the 

     highest utility is the portfolio with the highest expected return.

9.   E(rX) = [0.2 × (–20%)] + [0.5 × 18%] + [0.3 × 50%)] = 20% 

     E(r Y ) = [0.2 × (–15%)] + [0.5 × 20%] + [0.3 × 10%)] = 10% 

10.    σ^2X   = [0.2 × (–20 – 20) ^2] + [0.5 × (18 – 20)^2 ] + [0.3 × (50 – 20)^2 ] = 592 

        σX = 24.33% 

  σ Y  = [0.2 × (–15 – 10) ^2] + [0.5 × (20 – 10)^2 ] + [0.3 × (10 – 10)^2 ] = 175 

        σY = 13.23% 

11. E(r) = (0.9 × 20%) + (0.1 × 10%) = 19% 

12. The probability is 0.50 that the state of the economy is neutral.  Given a neutral 

     economy, the probability that the performance of the stock will be poor is 0.30, 

     and the probability of both a neutral economy and poor stock performance is: 

                   0.30 × 0.50 = 0.15

13. E(r) = [0.1 × 15%] + [0.6 × 13%] + [0.3 × 7%)] = 11.4% 

  15.   a.   E(r P) – rF  = ½Aσ^2 p = ½ × 4 ^2× (0.20)  = 0.08 = 8.0%

          b.   0.09 = ½Aσ^2P   = ½ × A × (0.20)^2  ⇒ A = 0.09/( ½ × 0.04) = 4.5  

          c.   Increased risk tolerance means decreased risk aversion (A), which results 

               in a decline in risk premiums.

16. For the period 1926 – 2006, the mean annual risk premium for large stocks over 

     T-bills is 8.42% 

          E(r) = Risk-free rate + Risk premium = 5% + 8.42% =13.42% 

17.  In the table below, we use data from Table 5.3 and the approximation: r ≅ R – i: 

         Large Stocks:                     r ≅ 12.19% − 3.13% =              9.06% 

        Small Stocks:                     r ≅ 18.14% − 3.13% =  15.01% 

        Long-Term T-Bonds:                r ≅   5.64% − 3.13% =             2.51% 

        T-Bills:                          r ≅   3.77% − 3.13% =             0.64% 

       Next, we compute real rates using the exact relationship: 

              r =-1=

        Large Stocks:                     r = 0.0906/1.0313 =  8.79%                         

        Small Stocks:                     r = 0.1501/1.0313 = 14.55% 

        Long-Term T-Bonds:                r = 0.0251/1.0313 =  2.43% 

        T-Bills                           r = 0.0064/1.0313 =  0.62%

18. a.   The expected cash flow is: (0.5 × $50,000) + (0.5 × $150,000) = $100,000 

               With a risk premium of 10%, the required rate of return is 15%.  

               Therefore, if the value of the portfolio is X, then, in order to earn a 15% 

               expected return: 

                       X(1.15) = $100,000 ⇒ X = $86,957

         b.   If the portfolio is purchased at $86,957, and the expected payoff is 

               $100,000, then the expected rate of return, E(r), is:

                   The portfolio price is set to equate the expected return with the 

                   required rate of return. 

          c.   If the risk premium over T-bills is now 15%, then the required return is: 

                 5% + 15% = 20% 

              The value of the portfolio (X) must satisfy: 

                      X(1.20) = $100, 000 ⇒ X = $83,333 

          d.   For a given expected cash flow, portfolios that command greater risk premia 

              must sell at lower prices.  The extra discount from expected value is a penalty 

              for risk.

19.      a.   E(rp ) = (0.3 × 7%) + (0.7 × 17%) = 14% per year 

                 σ  p= 0.7 × 27% = 18.9% per year 

         b.    Security       Investment    Proportions 

               T-Bills             30.0% 

                Stock A       0.7 × 27% =            18.9% 

                Stock B       0.7 × 33% =            23.1% 

                Stock C       0.7 × 40% =            28.0% 

          c.   Your Reward-to-variability ratio = S =  (17-7)/27 = 0.3704 

              Client's Reward-to-variability ratio =  (14-7)/18.9 = 0.3704 

Bạn đang đọc truyện trên: Truyen247.Pro

Tags: