Chào các bạn! Vì nhiều lý do từ nay Truyen2U chính thức đổi tên là Truyen247.Pro. Mong các bạn tiếp tục ủng hộ truy cập tên miền mới này nhé! Mãi yêu... ♥

Dich woowoo

<!-- /* Font Definitions */ @font-face {font-family:"Cambria Math"; panose-1:2 4 5 3 5 4 6 3 2 4; mso-font-charset:0; mso-generic-font-family:roman; mso-font-pitch:variable; mso-font-signature:-1610611985 1107304683 0 0 159 0;} @font-face {font-family:Calibri; panose-1:2 15 5 2 2 2 4 3 2 4; mso-font-charset:0; mso-generic-font-family:swiss; mso-font-pitch:variable; mso-font-signature:-1610611985 1073750139 0 0 159 0;} @font-face {font-family:Tahoma; panose-1:2 11 6 4 3 5 4 4 2 4; mso-font-charset:0; mso-generic-font-family:swiss; mso-font-pitch:variable; mso-font-signature:1627400839 -2147483648 8 0 66047 0;} @font-face {font-family:TimesNewRoman; panose-1:0 0 0 0 0 0 0 0 0 0; mso-font-charset:128; mso-generic-font-family:auto; mso-font-format:other; mso-font-pitch:auto; mso-font-signature:3 134676480 16 0 131073 0;} @font-face {font-family:SymbolMT; panose-1:0 0 0 0 0 0 0 0 0 0; mso-font-charset:128; mso-generic-font-family:auto; mso-font-format:other; mso-font-pitch:auto; mso-font-signature:0 134676480 16 0 131072 0;} @font-face {font-family:"\@TimesNewRoman"; panose-1:0 0 0 0 0 0 0 0 0 0; mso-font-charset:128; mso-generic-font-family:auto; mso-font-format:other; mso-font-pitch:auto; mso-font-signature:3 134676480 16 0 131073 0;} @font-face {font-family:"\@SymbolMT"; panose-1:0 0 0 0 0 0 0 0 0 0; mso-font-charset:128; mso-generic-font-family:auto; mso-font-format:other; mso-font-pitch:auto; mso-font-signature:0 134676480 16 0 131072 0;} /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-unhide:no; mso-style-qformat:yes; mso-style-parent:""; margin-top:0cm; margin-right:0cm; margin-bottom:10.0pt; margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-fareast-font-family:Calibri; mso-bidi-font-family:"Times New Roman"; mso-ansi-language:EN-US; mso-fareast-language:EN-US;} h3 {mso-style-priority:9; mso-style-unhide:no; mso-style-qformat:yes; mso-style-link:"Heading 3 Char"; mso-margin-top-alt:auto; margin-right:0cm; mso-margin-bottom-alt:auto; margin-left:0cm; mso-pagination:widow-orphan; mso-outline-level:3; font-size:13.5pt; font-family:"Times New Roman","serif"; mso-fareast-font-family:"Times New Roman"; mso-ansi-language:EN-US; mso-fareast-language:EN-US;} a:link, span.MsoHyperlink {mso-style-noshow:yes; mso-style-priority:99; color:blue; text-decoration:underline; text-underline:single;} a:visited, span.MsoHyperlinkFollowed {mso-style-noshow:yes; mso-style-priority:99; color:purple; mso-themecolor:followedhyperlink; text-decoration:underline; text-underline:single;} p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph {mso-style-priority:34; mso-style-unhide:no; mso-style-qformat:yes; margin-top:0cm; margin-right:0cm; margin-bottom:10.0pt; margin-left:36.0pt; mso-add-space:auto; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-fareast-font-family:Calibri; mso-bidi-font-family:"Times New Roman"; mso-ansi-language:EN-US; mso-fareast-language:EN-US;} p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst {mso-style-priority:34; mso-style-unhide:no; mso-style-qformat:yes; mso-style-type:export-only; margin-top:0cm; margin-right:0cm; margin-bottom:0cm; margin-left:36.0pt; margin-bottom:.0001pt; mso-add-space:auto; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-fareast-font-family:Calibri; mso-bidi-font-family:"Times New Roman"; mso-ansi-language:EN-US; mso-fareast-language:EN-US;} p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle {mso-style-priority:34; mso-style-unhide:no; mso-style-qformat:yes; mso-style-type:export-only; margin-top:0cm; margin-right:0cm; margin-bottom:0cm; margin-left:36.0pt; margin-bottom:.0001pt; mso-add-space:auto; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-fareast-font-family:Calibri; mso-bidi-font-family:"Times New Roman"; mso-ansi-language:EN-US; mso-fareast-language:EN-US;} p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast {mso-style-priority:34; mso-style-unhide:no; mso-style-qformat:yes; mso-style-type:export-only; margin-top:0cm; margin-right:0cm; margin-bottom:10.0pt; margin-left:36.0pt; mso-add-space:auto; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-fareast-font-family:Calibri; mso-bidi-font-family:"Times New Roman"; mso-ansi-language:EN-US; mso-fareast-language:EN-US;} span.Heading3Char {mso-style-name:"Heading 3 Char"; mso-style-priority:9; mso-style-unhide:no; mso-style-locked:yes; mso-style-link:"Heading 3"; mso-ansi-font-size:13.5pt; mso-bidi-font-size:13.5pt; font-family:"Times New Roman","serif"; mso-ascii-font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman"; mso-hansi-font-family:"Times New Roman"; mso-ansi-language:EN-US; mso-fareast-language:EN-US; font-weight:bold;} span.longtext {mso-style-name:long_text; mso-style-unhide:no;} span.gt-icon-text {mso-style-name:gt-icon-text; mso-style-unhide:no;} span.z-TopofFormChar {mso-style-name:"z-Top of Form Char"; mso-style-noshow:yes; mso-style-priority:99; mso-style-unhide:no; mso-style-locked:yes; mso-style-link:"z-Top of Form"; mso-ansi-font-size:8.0pt; mso-bidi-font-size:8.0pt; font-family:"Arial","sans-serif"; mso-ascii-font-family:Arial; mso-fareast-font-family:"Times New Roman"; mso-hansi-font-family:Arial; mso-bidi-font-family:Arial; display:none; mso-hide:all; mso-ansi-language:EN-US; mso-fareast-language:EN-US;} span.z-BottomofFormChar {mso-style-name:"z-Bottom of Form Char"; mso-style-noshow:yes; mso-style-priority:99; mso-style-unhide:no; mso-style-locked:yes; mso-style-link:"z-Bottom of Form"; mso-ansi-font-size:8.0pt; mso-bidi-font-size:8.0pt; font-family:"Arial","sans-serif"; mso-ascii-font-family:Arial; mso-fareast-font-family:"Times New Roman"; mso-hansi-font-family:Arial; mso-bidi-font-family:Arial; display:none; mso-hide:all; mso-ansi-language:EN-US; mso-fareast-language:EN-US;} .MsoChpDefault {mso-style-type:export-only; mso-default-props:yes; font-size:10.0pt; mso-ansi-font-size:10.0pt; mso-bidi-font-size:10.0pt; mso-ascii-font-family:Calibri; mso-fareast-font-family:Calibri; mso-hansi-font-family:Calibri;} @page Section1 {size:612.0pt 792.0pt; margin:72.0pt 72.0pt 72.0pt 72.0pt; mso-header-margin:36.0pt; mso-footer-margin:36.0pt; mso-paper-source:0;} div.Section1 {page:Section1;} -->

5.0 Sensory evaluation of Cheddar cheeses produced with Lactobacillus acidophilus, Lb. casei, Lb. paracasei and Bifidobacterium sp.*

5.1. Introduction

The ripening of cheese involves three primary biochemical processes namely glycolysis, lipolysis, and proteolysis. Proteolysis plays a critical role in determining the typical sensory characteristics and represents a significant indicator of quality, as shown for Cheddar cheese (Fox & McSweeney, 1996). Proteolysis is caused by enzymes contained in milk (plasmin, cathepsin), rennet (pepsin and chymosin) and microbial enzymes released by starter bacteria and non-starter lactic acid bacteria (NSLAB). A gradual decomposition of caseins occurs due to the combined action of the various proteolytic enzymes. Product of proteolysis including peptides and amino acids has been shown to be important for the development of Cheddar flavour (Thomas & Mills, 1981; Cliffe et al., 1993; Lynch et al., 1999). Addition of lactobacilli in cheeses has been associated with an increased proteolysis and intensification of flavour (McSweeney et al., 1994; Drake et al., 1996; Lane & Fox 1996; Lynch et al., 1999). Proteolytic enzymes produced by certain probiotic adjuncts were also found to degrade bitter peptides (Koka & Weimer, 2000). Broadbent et al. (2002) showed that lactococcal proteinases and rennet are responsible for the formation of bitter peptides from caseins in Cheddar cheese. Although bitter taste is considered a normal component of cheddar flavour, excessive bitterness may limit consumer acceptance of cheeses. Identification of an adjunct culture that produces a premium quality of Cheddar cheese will thus be useful to the industry. Glycolysis also influences the flavour of Cheddar cheese. It involves the conversion of lactose to lactic acid mainly by starter bacteria, reducing the pH of typical Cheddar to 5.1 – 5.4. During ripening, residual lactose (0.8-1.5%) is metabolized to predominantly Llactate. Oxidation of lactate by starter bacteria, NSLAB or probiotic adjunct in general produces 1 mole of acetate and 1 mole of CO2 and consumes 1 mole of O2 per mole of lactate utilized (Fox et al., 1993). Acetate may also be produced by starter bacteria or probiotic adjunct such as Lactobacillus and Bifidobacterium from lactose or citrate or amino acid and is usually present at fairly high concentrations in Cheddar cheeses (Fox & McSweeney, 1996). Acetate is considered to contribute to cheese flavour, although high concentrations may cause off-flavours. When Bifidobacterium lactis was used in combination with Lactobacillus acidophilus strain Ki as the starter in Gouda cheese manufacture (Gomes et al., 1995), there was a significant effect on cheese flavour after 9 wk of ripening, possibly due to the production of acetic acid by the Bifidobacterium. Production of acetic acid in cheeses especially with the addition of probiotic adjunct thus requires a careful examination. In our previous study (Chapters 3.0 & 4.0), six probiotic organisms (B. longum 1941, Lb. casei 279, Lb acidophilus 4962, B. lactis LAFTI®B94*, Lb. paracasei LAFTI®L26† and Lb. acidophilus LAFTI®L10) were used for the development of probiotic Cheddar cheeses. These organisms have been selected based on their acid and bile tolerance, adhesion to intestinal cell line, anticarcinogenic properties, oxygen sensitivity and ability to modify gut microflora of human subjects (Lankaputhra & Shah, 1998; McIntosh et al., 1999; Crittenden et al., 2001). These strains were shown to maintain their viability at high level of > 7.0 log10 cfu g-1 at the end of ripening period of 24 wk at 4oC. Addition of probiotic adjuncts also changed the proteolytic pattern and the organic acid profiles of the cheeses. The objective of this study was to investigate the influence of B. longum 1941, Lb. casei 279, Lb acidophilus 4962, B. lactis LAFTI®B94, Lb. paracasei LAFTI®L26 and Lb. acidophilus LAFTI®L10 added individually and in combination, on sensory properties of cheddar cheeses after ripening for 9 months at 4oC as affected by acetic acid production and proteolysis.

5.2. Materials and Methods

5.2.1. Cheddar cheese samples

Cheddar cheeses were made with 10 L pasteurized milk and 1.5% (v/v) inoculum of the mixed strain starter culture (L. lactis subsp. lactis and L. lactis subsp. cremoris) using a pair of custom made cheese vats. Three batches of Cheddar cheeses including a control cheese with only starter lactococci (Batch 1M), and probiotic cheeses produced with starter lactococci and mixture of Lactobacillus acidophilus 4962, Lb. casei 279 and Bifidobacterium longum 1941 (Batch 2M) or Lb. acidophilus LAFTI®L10, Lb. paracasei LAFTI®L26 and B. lactis LAFTI®B94 (Batch 3M) as described in Chapter 3.0 (section 3.2.2) were evaluated in a series of sensory evaluation. Seven batches of Cheddar cheeses including a control cheese with starter lactococci only (Batch 1) and six probiotic cheeses with starter lactococci and probiotic adjuncts (Batches 1-7) as described in Chapter 4.0 (Table 4.1) were also evaluated. The cheeses were manufactured in triplicates according to the standard procedures of Kosikowski (1977) as described in sections 3.2.2 and 4.2.2 and ripened for 9 months at 4oC. The chemical analyses of the cheeses during the first 24 wk of ripening is reported in Chapters 3.0 and 4.0. There was a delay in obtaining ethic approval of the protocol for sensory evaluation. The ethics committee take longer than it was anticipated. Hence sensory evaluation was carried out on the 9 months sample. The results of the chemical analysis after prolonged ripening (at 9 months) and their correlation with the sensory results are reported in this Chapter.

5.2.2. Sensory evaluation of cheeses

Staff and students of Victoria University were recruited as the sensory panelists for a series of triangle tests (n = 36), acceptance rating test (n = 30) and evaluation for specific attributes (n = 30). All panelists signed a Victoria University human subject’s consent form (Appendix A.1). The panelists were familiar with basic sensory evaluation techniques and prior to sensory evaluation they participated in briefing sessions. Panelists had access to deionized water and unsalted soda crackers to help cleanse their palates. For sensory evaluation, cheese samples were removed from the refrigerator and cut into pieces (about 1.5 x 1.5 x 1.5 cm in size) and placed on white plates coded with a random 3-digit numbers one hour prior to evaluation at room temperature (25oC). Cheese cubes from the three replications of the same batch were mixed randomly so that all replications from the same batch were presented equal number of times. For the triangle test (Appendix A.6), panelists were asked to choose the odd cheese in a series of eight triangle tests conducted in two days (4 combinations each day). The probiotic cheeses were presented against the control cheese to find out whether there were any significant differences between the control and the probiotic cheeses. The cheeses were presented as AAB, ABA, BAA, BBA, BAB and ABB, where ‘A’ was probiotic cheese and ‘B’ was control cheese and each combination was presented an equal number of times. Significant differences were determined using the method of Roessler et al. (1978). For acceptance rating test (Appendix A.5), panelists were instructed to evaluate their perception of the overall liking of the cheeses on a 10-point intensity scale (1 = dislike extremely, 10 = like extremely). Prior to tasting, panelists completed a questionnaire on frequency of cheese consumption (<1 once per wk, 2-3 times per wk, 4-5 times per wk, or > 5 times per wk) and cheese preference (mild, medium or sharp matured cheese) (Appendix A.4). Panelists evaluated all cheeses in two days (five at each session), with a control cheese included as a reference in each session. The manner in which the treatment combinations were divided between the sessions and the order in which the cheeses were presented was randomized to minimize the carryover effects (Muir & Hunter, 1991). Panelists were instructed to cleanse their palates before proceeding to the next sample. Panelists evaluated specific attributes, which included Cheddary flavour, bitterness, sour-acid, vinegary, creamy, hardness and crumbliness using a 10-point intensity scale (Appendix A.7). Panelists also evaluated all cheeses in two sessions (five at each session including a control at each session), as described previously. A wide range of descriptive vocabulary (attributes) for Cheddar flavour has been defined by Delahunty and Murray (1997) and Murray and Delahunty (2000). Drake et al. (1996) selected six specific attributes (bitter, sour-acid, oaky/nutty, creamy, firmness and crumbliness for the sensory evaluation of Cheddar cheeses made with the addition of adjunct lactobacilli. In our study similar terms were used with some modifications. Vinegary attribute was added to the attribute lists to determine the correlation between acetic acid concentrations obtained from instrumental analysis and human sensory perception of vinegary taste of the cheeses. Panelists received 3 main sessions of training (3 days) prior to sensory evaluation. In the first session panelists were trained for their ability to detect sour-acid taste, bitterness and vinegary taste of different concentration of lactic acid, caffeine and acetic acid in water. Detection threshold was determined using a series of duo-trio tests (Appendix A.2). In the second session, panelists were trained to recognize the oaky/nutty flavour of Cheddar cheese by using three different type of commercial cheese (“mild”, “tasty” and “vintage” cheeses). The attribute oaky/nutty, which corresponded to the flavour characteristic of premium quality Cheddar cheese (Bodyfelt et al., 1988), was changed to “Cheddary”, which was defined as the general flavours of Cheddar cheese (Hulin-Bertaud et al., 2000). Panelists were instructed to rate the Cheddary intensity using 1 to 10 scale (10 = highest intensity, 1 = lowest intensity) of three different types of commercial Cheddar cheeses (“mild” aged 3 months, “tasty” aged 9 months and “vintage” aged > 12 months). In the third session, panelists were trained for their ability to detect sour-acid taste, bitterness and vinegary taste of different concentration of lactic acid, caffeine and acetic acid in a cream cheese. Detection threshold was determined using a series of duo-trio tests. Panelists were also trained for their ability to rank products with different concentration of lactic acid, acetic acid and caffeine from lowest intensity to highest intensity in water and in cream cheese (Appendix A.3). Repeated testing was performed until panelists were competent to rank different intensity of lactic acid, acetic acid and caffeine both in water and in cream cheese.

5.2.3. Cheese composition

The composition of the cheeses including the salt, fat, moisture, protein contents and pH of the cheeses after ripening at 4oC for 9 months were determined according to the procedure described in section 3.2.3.

5.2.4. Acetic acid concentration

The concentrations of acetic acid after ripening at 4oC for 9 months were determined using high performance liquid chromatography (HPLC) as described in section 3.2.5.

5.2.5. Assessment of proteolysis

The water-soluble nitrogen (WSN), trichloroacetic acid-soluble nitrogen (TCA-SN) and phosphotungstic acid-soluble nitrogen (PTA-SN) of the cheeses were determined as per the method described in section 3.2.6. The proteolytic patterns of Cheddar cheeses were also analyzed by assessing the percentage hydrolysis of αs-casein and β-casein using sodium dodecyl sulphate – polyacrylamide gel electrophoresis (SDS–PAGE) as described in section 3.2.6.

5.2.6. Statistical analysis (data treatment)

 Data analysis was carried out with Minitab statistical package (Minitab Inc, State College, PA, USA). One-way analysis of variance was used to find out differences between means, with a significant level at α = 0.05. When significant differences were found among treatments, means were compared using Tukey’s test. The significance in the differences of data obtained from the triangle test was determined using the expanded statistical tables of Roessler et al. (1978). Simple linear correlation analysis was used to determine a relationship between mean scores of sensory attributes and that of chemical analysis.

5.3. Results and discussions

The results of the sensory analysis (n = 36) based on a triangle test to differentiate between control and probiotic Cheddar cheese are shown in Table 5.1. Batches 2 to 8 were presented against control cheese Batch 1. Batches 2M and 3M were presented against control cheese Batch 1M. There was a significant difference (P < 0.05) between probiotic cheeses made using B. longum 1941, B. lactis LAFTI®B94, Lb. casei 279, Lb. paracasei LAFTI®L26, Lb. acidophilus LAFTI®L10 and the control cheese. Only the cheese made using Lb. acidophilus 4962 was similar to the control cheese (P > 0.05). Triangle test results also show that the control cheese Batch 1M (Chapter 3.0) and control cheese Batch 1 (Chapter 4.0) were not significantly different (4 no of correct judgements; n = 36; P < 0.05). Batches 1 and 1M were produced using similar methods (section 3.2.2) and had only 2 wk differences in ripening age. The same amount of cheeses from Batch 1M and Batch 1 were thus mixed and used as the control cheese for acceptance and specific attributes scorring test. Addition of Lactobacillus adjuncts has been reported previously to improve Cheddar cheese flavour (Broome et al., 1990; McSweeney et al., 1994), but in other case they were responsible for flavour defects (Lee et al., 1990). Acceptability of the control and probiotic cheeses in our study is shown in Table 5.2. There was no significant difference (P < 0.05) between acceptance scores of control cheeses presented at sensory sessions day 1 and day 2. Acceptance scores of other treatments presented at day 1 and day 2 could then be compared. The acceptance scores of cheeses with the addition of probiotic adjuncts were not significantly different (P > 0.05) to the control except for cheeses made with the addition of Lb. casei (Batch 4) and mixture of ABC culture (Lb. acidophilus 4962, B. longum 1941, Lb. casei 279) (Batch 2M), which received the lowest acceptance scores. The results thus show that Cheddar cheeses made with probiotic adjuncts B. longum 1941, B. lactis LAFTI®B94, Lb. paracasei LAFTI®L26 or Lb. acidophilus LAFTI®L10 received acceptance scores comparable to that of control cheese. Results from the questionnaire form completed by the panelists showed that the type of cheese preferred, sex, age and frequency of cheese consumption did not affect the acceptance scores (P > 0.05). About 80% of panellists who participated for the acceptance rating consumed cheese at 1-2 times per wk or more, 70% were female, 73% were between the ages of 18 and 35 years and 53% preferred mild cheeses. Scores for specific attributes of the Cheddar cheeses are shown in Table 5.3. Out of the seven attributes assessed, creamy, sour-acid, vinegary, bitterness and hardness of the cheeses were significantly different among various cheeses (P < 0.05). Cheeses with the addition of probiotic adjuncts received higher scores for bitterness, sour-acid taste and vinegary taste when compared to those without probiotic. Bitterness scores in cheese with Lb. casei 279 (Batch 4) and Lb. paracasei LAFTI®L26 (Batch 5) were significantly higher (P < 0.05) than those for the control cheese (Batch 1). Table 5.4 shows that there was a negative and significant correlation between the bitterness scores and the acceptability of the cheeses (r = -0.809, P= 0.008). The resulting bitter off-flavours have probably masked the liberated aroma component in the cheeses and may explain the reason for lower acceptance scores obtained. These results supported an earlier observation of El Soda et al. (2000), who reported that addition of lactobacilli enhanced bitterness when incorporated into Cheddar cheese. In that study, the enhanced bitterness was related to the complex peptidases system of the lactobacilli used. Table 5.4 also shows that the acceptance scores were influenced by the sour-acidic scores (r = -0.858, P = 0.003). Higher levels of bitterness and development of more intense sour-acid flavour in Cheddar cheeses containing adjunct cultures of Lactobacilli have been reported by Lee et al. (1990) and Lynch et al. (1999). Lynch et al. (1999), however found that the bitterness scores were only higher at the early stage of ripening (up to 6 months); thereafter, the bitterness scores for the cheeses with adjunct lactobacilli were similar to those without adjunct lactobacilli. Both bitterness and the sour-acid taste of the cheeses needed to be controlled in order to produce probiotic cheeses with acceptable quality. Although there was a significant correlation between Cheddary and acceptances scores, ANOVA showed that the Cheddary scores were not significantly different (P > 0.05) among various cheeses (Table 5.3).

5.3.1. Relationship between compositional variables of Cheddar cheeses and their sensory characteristic

The results of the composition (percentage moisture, fat, protein, salt and pH), degree of proteolysis (percentage of WSN/TN, TCA-SN/TN, PTA-SN/TN, hydrolysis of αs1-casein and β-casein) and acetic acid concentration of Cheddar cheeses after ripening at 4oC for 9 months are shown in Table 5.5. Simple linear correlation between the mean scores of the specific attributes and the chemical analysis is shown in Table 5.6. No significant differences (P > 0.05) were observed among the experimental cheeses for the moisture, salt, fat and protein content, which confirmed our previous findings that addition of probiotic microorganisms has no direct effect on cheese composition (Chapter 3.0, section 3.3.1 & Chapter 4.0, section 4.3.1). The relationship between the main compositional variables (protein, fat, salt, moisture and pH) of the cheeses and their sensory characteristics were investigated (Table 5.6). There were no significant correlations between the composition variables (protein, salt and moisture content) of the cheeses and sensory attributes scores. The fat content of the cheeses tended to show positive but not significant correlation with the creamy scores of the cheeses (r = 0.627, P = 0.071). There were, however, negative and significant correlation between the fat content and mean scores for hardness (r = -0.731, P = 0.025). The pH of probiotic cheeses was in general lower than that of control cheese, but this did not influence the sour-acid scores of the cheeses. It is interesting to note, however, that vinegary scores were negatively and significantly correlated to the pH of the cheeses (r = -0.830, P = 0.006) (Table 5.6).

5.3.2. Relationship between acetic acid concentration and sensory attributes of Cheddar cheeses

 Concentrations of acetic acid in cheese with Bifidobacterium sp. (Batch 2 & 3), Lb. casei (Batch 4) and Lb. paracasei (Batch 5) after ripening at 4oC for 9 months were significantly higher (P < 0.05) as compared to the control cheese (Table 5.5). Lb. casei is known to produce acetic acid (Shihata & Shah, 2000). On the other hand, Bifidobacterium sp. produced acetic acid and lactic acid from lactose via a fructose-6-phosphate shunt pathway (Dinakar & Mistry, 1994) as described in Chapter 3.0 section 3.3.4. The level of acetic acid in the Cheddar cheeses was assessed during sensory evaluation as the level of vinegary taste as shown in Table 5.3. During the course of training, panelists’ average threshold of acetic acid was determined using a series of duo trio tests. It was found that their acetic acid threshold in water was less than 0.006% (v/v). The vinegary taste, however, was more difficult to be detected in the presence of other components such as fat, protein, acid and salt. When different concentrations of acetic acid were mixed into a product such as cream cheese, the detection threshold increased more than ten fold to 0.06% - 0.100% (v/w). The detection thresholds both in water and in cream cheese, however, were much lower than the concentration of acetic acid in experimental Cheddar cheeses (Table 5.5). Production and accumulation of acetic acid in the probiotic cheeses were reflected in the sensory scores. Although all cheeses with adjuncts probiotic organisms received higher vinegary attribute scores (Table 5.3), there was no significant correlation between vinegary and acceptability scores (Table 5.4). Similarly, there was no significant correlation between the mean scores of vinegary attribute and acetic acid concentration of the cheeses (r = 0.271, P = 0.481; Table 5.6). The result indicated that, although panelists were able to detect the presence of acetic acid in the probiotic Cheddar cheeses, they were unable to detect the differences in the concentration of acetic acid between different batches of cheeses. Results also indicated that the vinegary flavour of the cheeses in this study was still within the acceptable range.

5.3.3. Relationship between proteolytic pattern of Cheddar cheeses and their sensory characteristics

Higher levels of proteolysis were detected in probiotic cheeses after 9 months of ripening at 4oC as indicated by the release of more water-, TCA- and PTA-soluble peptides in the probiotic cheeses (Table 5.5). The soluble nitrogenous compounds provided by casein proteolysis contribute directly to cheese flavour and texture (Fox et al., 1993). These nitrogen fractions generally increased as cheeses aged, corresponding to the continued breakdown of casein and large peptides into small peptides and amino acids by the action of starter culture enzymes and residual rennet (Lau et al., 1991). The levels of proteolysis was particularly high in cheeses with the addition of Lb. casei 279 (Batch 4) and Lb. paracasei LAFTI®L26 (Batch 5), because both strains have considerably higher proteolytic activity (Chapter 4.0, section 4.2.5). At the end of the 9 months ripening period at 4oC, percentage hydrolysis of αs1- CN in all probiotic cheeses except B. longum 1941 (Batch 3) cheese was significantly higher (P < 0.05) than control cheeses. The increased proteolysis in probiotic cheeses showed that the cheeses ripened faster than controls. The results were expected to influence the Cheddary scores of the cheeses, but Table 5.3 shows that the Cheddary scores were not significantly different between batches. The scores of commercial cheeses used during the training session included 3.11 ± 0.54, 5.60 ± 0.41 and 8.90 ± 0.62 for “mild”, “tasty” and “vintage” cheeses, respectively. The average scores of Cheddary attributes as shown in Table 5.3 indicated that the experimental cheeses were comparable to the commercial “tasty” cheese. The findings also show that the probiotic adjuncts used in this study did not increase the level of perceived maturity. The control cheese, despite having lower WSN, TCA-SN and PTA-SN had a Cheddary score comparable to the probiotic cheeses (Table 5.3). Previously, excessive proteolysis was associated with the increase in bitterness (Lee et al., 1990). Table 5.6 shows that there was a positive and significant correlation between the scores of bitterness and the level of WSN (r = 0.755, P = 0.046). According to Lemieux and Simard (1992), bitterness develops when small to medium-size hydrophobic peptides produced by the coagulant and microbial enzymes accumulate to the levels that exceed desirable taste thresholds. Residue 193-209 of the C-terminal region of β-casein and residue 1-9 of the C-terminal region of as1-casein have been associated with bitterness in cheese (Lemieux & Simard, 1992). Reverse phase - HPLC chromatograms of the Cheddar cheeses in our study indicated the presence of β-casein (f 193-209) and as1-casein (f 1-9) (Chapter 6.0, section 6.3.4). Broadbent et al. (2002) performed regression analysis of bitter flavour scores from the trained sensory panel and concentration of β-casein (f 193-209) and as1- casein (f 1-9) and found that these peptides had positive correlation with bitterness. Hydrolysis of these peptides is associated with decreased bitterness in Cheddar cheese. The total area of the peak of these peptides during ripening is discussed in Chapter 6.0 section 6.3.5. A level of salt in moisture (S/M) > 4.5% is necessary to prevent the development of bitterness in cheese (Mistry & Kasperson, 1998). These ratios reflect the amount of free water available for microbial growth. A lower level of S/M and high water activities allow excessive bacterial growth, promote excessive proteolysis and lipolysis and in turn lead to defective body, texture (open, soft, greasy), flavour (unclean, bitter) and consumer unacceptability (Beresford & Williams, 2004). The moisture content of the experimental cheeses was slightly higher than average moisture content of commercial cheeses. The higher moisture content resulted in the lowering of the percentage of S/M. Although there was no significant difference (P > 0.05) between the salt content of the cheeses, some cheeses such as those with Lb. casei 279 (Batch 4) and Lb. paracasei LAFTI®L26 (Batch 5), had only about 4.3% S/M. The percentage of S/M would probably be one of the factors that contribute to the increase in bitterness. The most important contributor to the continuous casein matrix of a Cheddar cheese is αs1-CN (Lawrence et al., 1987), and hydrolysis of this casein is believed to be responsible for the softening of Cheddar cheese texture (Grappin et al., 1985). Cheese with the addition of B. longum 1941 (Batch 2), Lb. casei 279 (Batch 4) and Lb. paracasei LAFTI®L26 (Batch 5) received significantly lower hardness scores than the control (Table 5.3). The scores however did not influence the acceptability of the cheeses (Table 5.4) and no correlation was observed between the degree of proteolysis (percentage of WSN/TN, TCA-SN/TN, PTA-SN/TN) and panelists’ scores for hardness (Table 5.6).

5.4. Conclusions

Sensory panelists perceived all probiotic cheeses except that with Lb. acidophilus 4962 to be significantly different than the control cheese without probiotic. Acceptability of probiotic cheese with Lb. casei 279 was significantly lower than that of the control cheese with bitterness and sour-acid taste as the major defects. Concentration of acetic acid in cheeses with Bifidobacterium sp., Lb. casei 279 and Lb. paracasei LAFTI®L26 was significantly higher than the control cheese. Vinegary scores, however, did not significantly influence the acceptability of the cheeses and panelists were not able to detect the various concentrations of acetic acid between the different batches of cheese. Concentrations of soluble nitrogen and hydrolysis of casein were higher in probiotic cheeses, but increased proteolysis did not significantly influence the Cheddary attribute scores of the cheeses. There was, however, a positive and significant correlation between the scores of bitterness and the level of water-soluble nitrogen. Although there was no significant correlation between the composition variables (protein, salt and moisture content) and scores of sensory attributes, cheeses with the lowest percentage of S/M received the highest bitterness scores. Some strains used in the study have potential for use in the production of probiotic Cheddar cheese with acceptable quality. 

5.0 Sensory evaluation of Cheddar cheeses produced with Lactobacillus acidophilus, Lb. casei, Lb. paracasei and Bifidobacterium sp.*

5.1. Introduction

Các chín pho mát bao gồm ba tiểu học là quá trình sinh hóa glycolysis, lipolysis, và sự phân giải protein. Sự phân giải protein đóng vai trò quan trọng trong việc xác định các đặc tính cảm quan tiêu biểu và đại diện cho một chỉ số quan trọng về chất lượng, như được hiển thị cho Cheddar pho mát (Fox & McSweeney, 1996). Sự phân giải protein gây ra bởi các enzym có trong sữa (plasmin, cathepsin), men dịch vị (pepsin và chymosin) và enzyme vi khuẩn được phát hành bởi vi khuẩn và vi khuẩn khởi acid lactic không khởi động (NSLAB). Một phân hủy dần dần của casein xảy ra do hành động kết hợp của các enzym thủy phân protein khác nhau. Sản phẩm của sự phân giải protein trong đó có peptide và axit amin đã được chứng minh là quan trọng đối với sự phát triển của Cheddar hương vị (Thomas & Mills, 1981; Cliffe và cộng sự, 1993;. Lynch và cộng sự, 1999.). Bổ sung lactobacilli trong pho mát đã được kết hợp với một sự phân giải protein tăng lên và tăng cường hương vị (McSweeney và cộng sự, 1994;. Drake và cộng sự, 1996;. Lane & Fox năm 1996; Lynch và cộng sự, 1999.). Enzym thủy phân protein được sản xuất bởi một số adjuncts probiotic cũng được tìm thấy để làm giảm peptide đắng (Koka & Weimer, 2000). Broadbent et al. (2002) cho thấy proteinases lactococcal và men dịch vị có trách nhiệm cho việc hình thành các chuỗi axit amin đắng từ casein trong pho mát Cheddar. Mặc dù vị cay được coi là một thành phần bình thường của hương vị cheddar, quá nhiều cay đắng có thể hạn chế sự chấp nhận của người tiêu dùng pho mát. Xác định một nền văn hóa phụ trợ sản xuất một chất lượng cao của pho mát Cheddar do đó sẽ hữu ích cho ngành công nghiệp. Glycolysis cũng ảnh hưởng đến hương vị của pho mát Cheddar. Nó liên quan đến việc chuyển đổi lactose thành axit lactic chủ yếu là do vi khuẩn khởi động, làm giảm độ pH của Cheddar điển hình cho 5,1-5,4. Trong quá trình chín, dư lactose (0,8-1,5%) được chuyển hóa chủ yếu Llactate. Quá trình oxy hóa lactate bởi vi khuẩn khởi, NSLAB hoặc phụ trợ sản xuất probiotic nói chung 1 mol của acetate và nốt ruồi 1 / CO2 và tiêu thụ 1 mol của O2 mỗi nốt ruồi của lactate sử dụng (Fox và cộng sự, 1993.). Acetate cũng có thể được sản xuất bởi vi khuẩn khởi động hoặc probiotic thuốc hỗ trợ như Lactobacillus và Bifidobacterium từ lactose hoặc axit amin citrate hay và thường có mặt tại khá nồng độ cao trong pho mát Cheddar (Fox & McSweeney, 1996). Acetate được xem là đóng góp cho hương vị pho-mát, mặc dù nồng độ cao có thể gây ra-hương vị. Khi Bifidobacterium lactis được sử dụng kết hợp với chủng Lactobacillus acidophilus Ki là khởi trong sản xuất pho mát Gouda (Gomes và cộng sự, 1995.), Đã có một ảnh hưởng đáng kể hương vị pho-mát sau 9 tuần của chín, có thể là do sự sản xuất axit axetic bởi Bifidobacterium. Sản xuất axit axetic trong pho mát đặc biệt là với việc bổ sung probiotic thuốc hỗ trợ như vậy, đòi hỏi phải có kiểm tra cẩn thận. Trong nghiên cứu trước đây của chúng tôi (Chương 3,0 và 4,0), sáu probiotic sinh vật (B. longum năm 1941, Lb casei 279,. Lb acidophilus 4962, B. lactis LAFTI ® B94 *, Lb paracasei LAFTI. ® † L26 và Lb acidophilus LAFTI. ® L10) được sử dụng cho sự phát triển của probiotic pho mát Cheddar. Những sinh vật đã được lựa chọn dựa trên acid mật và khoan dung, độ bám dính vào các tế bào đường ruột, đặc tính chống ung thư, độ nhạy và khả năng oxy để sửa đổi vi sinh đường ruột của đối tượng con người (Lankaputhra & Shah, năm 1998; McIntosh và cộng sự, 1999;. Crittenden et al , 2001).. Các chủng này được hiển thị để duy trì khả năng tồn tại của họ ở cấp cao> 7,0 log10 cfu g-1 vào cuối giai đoạn chín của 24 tuần ở 4oC. Bổ sung probiotic adjuncts cũng thay đổi các mô hình phân giải protein và cấu hình acid hữu cơ của các loại pho mát. Mục tiêu của nghiên cứu này là để điều tra ảnh hưởng của B. longum năm 1941, Lb. casei 279, Lb acidophilus 4962, B. lactis LAFTI ® B94, Lb. paracasei LAFTI ® L26 và Lb. acidophilus LAFTI ® L10 tạo cá nhân và kết hợp, về tính chất cảm quan của pho mát cheddar sau khi chín cho 9 tháng ở 4oC như bị ảnh hưởng bởi sản xuất axit axetic và sự phân giải protein.

5.2. Materials and Methods

5.2.1. Cheddar cheese samples

pho mát Cheddar được thực hiện với 10 sữa tiệt trùng L và 1,5% (v / v) truyền chất độc của nền văn hóa pha trộn chủng starter (L. lactis subsp lactis và L. lactis subsp.. cremoris) bằng cách sử dụng một cặp thùng pho mát tùy chỉnh thực hiện. Ba lô của pho mát Cheddar trong đó có một pho-mát kiểm soát với chỉ khởi lactococci (Batch 1M), và pho mát probiotic sản xuất với lactococci khởi động và hỗn hợp của 4962 Lactobacillus acidophilus, Lb. casei 279 và Bifidobacterium longum 1941 (Batch 2M) hoặc Lb. acidophilus LAFTI ® L10, Lb. paracasei LAFTI ® L26 và B. lactis LAFTI ® B94 (Batch 3M) như mô tả trong Chương 3,0 (mục 3.2.2) được đánh giá trong một loạt các đánh giá cảm quan. Bảy lô của pho mát Cheddar trong đó có một pho-mát kiểm soát với lactococci starter chỉ (Batch 1) và sáu pho mát probiotic với lactococci khởi và adjuncts probiotic (Những lô 1-7) như mô tả trong Chương 4.0 (Bảng 4.1) cũng được đánh giá. Các loại pho mát được sản xuất tại triplicates theo thủ tục chuẩn của Kosikowski (1977) như mô tả trong phần 3.2.2 và 4.2.2 và chín trong 9 tháng tại 4oC. Các phân tích hóa học của các pho mát trong 24 tuần đầu tiên của quá trình chín được báo cáo trong chương 3.0 và 4.0. Có một sự chậm trễ trong việc có được chấp thuận đạo đức của giao thức để đánh giá cảm quan. Các ủy ban đạo đức mất nhiều thời gian hơn so với dự kiến. Do đó đánh giá cảm quan được tiến hành trên các mẫu 9 tháng. Các kết quả phân tích hóa học sau khi chín kéo dài (từ 9 tháng) và tương quan của chúng với các kết quả cảm giác được báo cáo trong chương này.

5.2.2. Sensory evaluation of cheeses

Nhân viên và sinh viên của Đại học Victoria đã được tuyển dụng vào các chuyên gia giác quan cho một loạt các xét nghiệm hình tam giác (n = 36), chấp nhận đánh giá thử nghiệm (n = 30) và đánh giá cho các thuộc tính cụ thể (n = 30). Tất cả các chuyên gia đã ký giấy chấp thuận một con người thuộc Đại học Victoria's (Phụ lục A.1). Các tham luận viên đã quen thuộc với các kỹ thuật cơ bản đánh giá cảm quan và đánh giá cảm quan trước khi họ tham gia vào các buổi giao ban. Tham luận viên đã tiếp cận với nước deionized và bánh quy giòn soda không ướp muối để giúp làm sạch khẩu vị của họ. Đối với đánh giá cảm quan, mẫu pho mát đã được loại bỏ khỏi tủ lạnh và cắt thành miếng (khoảng 1,5 x 1,5 x 1,5 cm) và được đặt trên đĩa trắng được mã hóa với 3 chữ số số ngẫu nhiên một giờ trước khi đánh giá ở nhiệt độ phòng (25oC) . khối Pho mát từ ba lần lặp lại của cùng một đợt được trộn ngẫu nhiên để tất cả các lần lặp lại từ hàng loạt đã được trình bày cùng một số lần bằng nhau. Đối với các thử nghiệm hình tam giác (Phụ lục A.6), các chuyên gia đã được yêu cầu chọn phô mai lẻ trong một loạt các xét nghiệm tám tam giác thực hiện trong hai ngày (4 tổ hợp mỗi ngày). Các pho mát probiotic đã được trình bày với các pho mát kiểm soát để tìm hiểu xem có bất kỳ sự khác biệt đáng kể giữa kiểm soát và các loại pho mát probiotic. Các loại pho mát đã được trình bày như AAB, ABA, BAA, BBA, BAB và ABB, phô mai probiotic nơi 'A' được và 'B' được kiểm soát pho mát và mỗi sự kết hợp đã được trình bày một số lần bằng nhau. sự khác biệt đáng kể đã được xác định bằng cách sử dụng các phương pháp của al Roessler và cộng sự. (1978). Đối với các thử nghiệm đánh giá chấp nhận (Phụ lục A.5), các chuyên gia đã được hướng dẫn để đánh giá nhận thức của họ về ý thích chung của các loại pho mát trên một quy mô cường độ 10-điểm (1 = không thích vô cùng, 10 = như vô cùng). Trước khi nếm, các chuyên gia đã hoàn thành một bảng câu hỏi về tần số tiêu thụ pho mát (<1 lần / tuần, 2-3 lần mỗi tuần, 4-5 lần mỗi tuần, hoặc> 5 lần / tuần) và sở thích pho mát (nhẹ, trung bình hay sắc nét trưởng thành phô mai) (Phụ lục A.4). Các chuyên gia đã đánh giá tất cả các loại pho mát trong hai ngày (năm tại mỗi phiên), với một pho-mát kiểm soát bao gồm như là một tham chiếu trong mỗi buổi học. Cách thức mà các kết hợp điều trị được phân chia giữa các phiên họp và thứ tự mà các loại pho mát đã được trình bày đã được chọn ngẫu nhiên để giảm thiểu các tác carryover (Muir & Hunter, 1991). Tham luận viên được hướng dẫn để làm sạch khẩu vị của họ trước khi tiếp tục để các mẫu tiếp theo. Các chuyên gia đã đánh giá cụ thể các thuộc tính, trong đó có hương vị Cheddary, cay đắng, axit chua, kem giọng chua cay độ cứng, và crumbliness sử dụng một quy mô cường độ 10-điểm (Phụ lục A.7). Tham luận viên cũng được đánh giá tất cả các loại pho mát ở hai phiên (năm tại mỗi kỳ họp bao gồm một điều khiển ở mỗi phiên), như được mô tả trước đây. Một loạt các từ ngữ mô tả (thuộc tính) cho Cheddar hương vị đã được xác định bởi Delahunty và Murray (1997) và Murray và Delahunty (2000). Drake et al. (1996) đã chọn sáu thuộc tính cụ thể (đắng, chua, acid, oaky / hấp dẫn, kem, độ cứng và crumbliness để đánh giá cảm quan của pho mát Cheddar được thực hiện với sự bổ sung của lactobacilli bổ sung. Trong nghiên cứu của chúng tôi thuật ngữ tương tự đã được sử dụng với một số sửa đổi. Giọng chua cay thuộc tính được thêm vào thuộc tính trong danh sách để xác định mối tương quan giữa nồng độ axit axetic thu được từ công cụ phân tích và nhận thức giác quan của con người của vị giọng chua cay của các chuyên gia đã nhận được pho mát. 3 phiên chính của đào tạo (3 ngày) trước khi đánh giá cảm quan. Trong phiên họp đầu tiên tham luận viên được đào tạo cho họ khả năng phát hiện acid chua, mùi vị, cay đắng và hương vị giọng chua cay nồng độ khác nhau của acid lactic, caffeine và acetic acid trong nước. ngưỡng phát hiện được xác định bằng cách sử dụng một loạt các bộ đôi, bộ ba xét nghiệm (Phụ lục A.2). Trong phiên họp thứ hai, các chuyên gia đã được huấn luyện để nhận ra những hương vị / oaky hấp dẫn của pho mát Cheddar bằng cách sử dụng ba loại khác nhau của pho mát thương mại ("nhẹ", "ngon" và "cổ điển" pho mát). Các oaky thuộc tính / hấp dẫn, mà tương ứng với các đặc trưng hương vị của pho mát Cheddar chất lượng cao (Bodyfelt et al, 1988.), được đổi thành "Cheddary", được định nghĩa là hương vị tổng hợp của pho mát Cheddar (Hulin-Bertaud et al, 2000.). tham luận viên được hướng dẫn tỷ lệ Cheddary cường độ sử dụng 1-10 có quy mô (10 = cường độ cao nhất, 1 = thấp nhất cường độ) của ba loại khác nhau của pho mát Cheddar thương mại ("nhẹ" độ tuổi từ 3 tháng, "ngon" ở độ tuổi 9 tháng và "cổ điển" ở độ tuổi> 12 tháng) . Trong phiên họp thứ ba, các chuyên gia đã được đào tạo cho họ khả năng phát hiện acid chua, mùi vị, cay đắng và hương vị giọng chua cay nồng độ khác nhau của acid lactic, acid acetic caffeine và trong một pho mát kem. phát hiện ngưỡng đã được xác định bằng cách sử dụng một loạt các bộ ba, bộ đôi xét nghiệm. tham luận viên cũng được đào tạo cho họ khả năng để xếp hạng các sản phẩm có nồng độ khác nhau của acid lactic, acid acetic và caffeine từ cường độ thấp nhất với cường độ cao trong nước và trong kem pho mát (Phụ lục A.3) thử nghiệm lặp đi lặp lại. đã được thực hiện cho đến khi các chuyên gia đã được thẩm quyền để xếp hạng cường độ khác nhau của acid lactic, acid acetic và caffeine cả trong nước và trong kem pho mát.

5.2.3. Cheese composition

The composition of the cheeses including the salt, fat, moisture, protein contents and pH of the cheeses after ripening at 4oC for 9 months were determined according to the procedure described in section 3.2.3.

5.2.4. Acetic acid concentration

The concentrations of acetic acid after ripening at 4oC for 9 months were determined using high performance liquid chromatography (HPLC) as described in section 3.2.5.

5.2.5. Assessment of proteolysis

The water-soluble nitrogen (WSN), trichloroacetic acid-soluble nitrogen (TCA-SN) and phosphotungstic acid-soluble nitrogen (PTA-SN) of the cheeses were determined as per the method described in section 3.2.6. The proteolytic patterns of Cheddar cheeses were also analyzed by assessing the percentage hydrolysis of αs-casein and β-casein using sodium dodecyl sulphate – polyacrylamide gel electrophoresis (SDS–PAGE) as described in section 3.2.6.

5.2.6. Statistical analysis (data treatment)

 Data analysis was carried out with Minitab statistical package (Minitab Inc, State College, PA, USA). One-way analysis of variance was used to find out differences between means, with a significant level at α = 0.05. When significant differences were found among treatments, means were compared using Tukey’s test. The significance in the differences of data obtained from the triangle test was determined using the expanded statistical tables of Roessler et al. (1978). Simple linear correlation analysis was used to determine a relationship between mean scores of sensory attributes and that of chemical analysis.

5.3. Results and discussions

Các kết quả phân tích cảm quan (n = 36) dựa trên một bài kiểm tra tam giác để phân biệt giữa kiểm soát và pho mát Cheddar probiotic được thể hiện trong Bảng 5.1. Đợt 2-8 đã được trình bày với hàng loạt pho mát kiểm soát 1. Lô 2M và 3M đã được trình bày với 1M kiểm soát hàng loạt pho mát. Có một sự khác biệt có ý nghĩa (P <0,05) giữa các loại pho mát làm bằng cách sử dụng probiotic B. longum năm 1941, B. lactis LAFTI ® B94, Lb. casei 279, Lb. paracasei LAFTI ® L26, Lb. acidophilus LAFTI ® L10 và pho mát kiểm soát. Chỉ có các pho mát được thực hiện bằng cách sử dụng Lb. acidophilus 4962 cũng tương tự như các pho mát kiểm soát (P> 0,05). Tam giác kết quả thử nghiệm cũng cho thấy rằng kiểm soát pho mát 1M hàng loạt (Chương 3,0) và hàng loạt pho mát kiểm soát 1 (Chương 4,0) không có ý nghĩa khác nhau (4 không có bản án chính xác; n = 36; P <0,05). Đợt 1 và 1M đã được sản xuất bằng cách sử dụng phương pháp tương tự (mục 3.2.2) và đã chỉ có 2 sự khác biệt trong chín tuần tuổi. Cùng một số lượng phó mát từ 1M hàng loạt và hàng loạt 1 được như vậy, hỗn hợp và sử dụng như là pho mát kiểm soát việc chấp nhận và cụ thể các thuộc tính scorring thử nghiệm. Bổ sung adjuncts Lactobacillus đã được báo cáo trước đây để cải thiện hương vị pho mát Cheddar (Broome và cộng sự, 1990;.. McSweeney và cộng sự, 1994), nhưng trong trường hợp khác mà họ đã chịu trách nhiệm về lỗi hương vị (Lee et al, 1990.). Chấp nhận sự kiểm soát và pho mát probiotic trong nghiên cứu của chúng tôi được thể hiện trong Bảng 5.2. Không có sự khác biệt có ý nghĩa (P <0,05) giữa các điểm chấp nhận pho mát kiểm soát trình bày tại phiên cảm giác ngày 1 và ngày 2. điểm chấp nhận phương pháp điều trị khác trình bày tại ngày 1 và ngày thứ 2 sau đó có thể so sánh. Các điểm chấp nhận pho mát với việc bổ sung probiotic adjuncts không có ý nghĩa khác nhau (P> 0,05) để kiểm soát ngoại trừ phó mát được thực hiện với sự bổ sung của Lb. casei (Batch 4) và hỗn hợp của ABC văn hóa (4962 lb acidophilus, B. longum năm 1941, Lb casei 279.) (Batch 2M), và đã nhận được các điểm thu thấp nhất. Những kết quả đó cho thấy pho mát Cheddar được thực hiện với longum probiotic B. adjuncts năm 1941, B. lactis LAFTI ® B94, Lb. paracasei LAFTI ® L26 hoặc Lb. acidophilus LAFTI ® L10 nhận được điểm chấp nhận tương đương với phó-mát kiểm soát. Kết quả từ các mẫu bảng câu hỏi hoàn thành các chuyên gia đã cho thấy các loại pho mát ưa thích, tuổi tác, giới tính và tần suất tiêu thụ pho mát không ảnh hưởng đến các điểm chấp nhận (P> 0,05). Khoảng 80% của những người tham gia cho Corporation Hội đồng Chuyên pho mát chấp nhận các tiêu đánh giá tại 1-2 lần mỗi tuần hay nhiều hơn, 70% là nữ, 73% là trong độ tuổi từ 18 đến 35 năm và 53% ưa thích pho mát nhẹ. Điểm cho các thuộc tính cụ thể của pho mát Cheddar được thể hiện trong Bảng 5.3. Trong số bảy thuộc tính đánh giá, kem, axit chua, giọng chua cay, cay đắng và độ cứng của pho mát có ý nghĩa khác nhau giữa các loại pho mát khác nhau (P <0,05). Pho mát với việc bổ sung probiotic adjuncts nhận được điểm số cao hơn cho cay đắng, vị chua, axit và hương vị giọng chua cay khi so sánh với những người không có probiotic. Cay đắng điểm số trong pho mát với Lb. casei 279 (Batch 4) và Lb. paracasei LAFTI ® L26 (Batch 5) đã cao hơn đáng kể (P <0,05) hơn so với các pho-mát kiểm soát (Batch 1). Bảng 5.4 cho thấy rằng có một mối tương quan tiêu cực và đáng kể giữa các điểm cay đắng và chấp nhận của pho mát (r = -0,809, P = 0,008). Các kết quả cay đắng ngoài hương vị có thể đeo mặt nạ giải phóng thành phần hương thơm trong mát và có thể giải thích lý do chấp nhận điểm số thấp hơn được. Những kết quả này hỗ trợ một quan sát trước đó của El Soda et al. (2000), người đã báo cáo là tăng cường thêm cay đắng lactobacilli khi đưa vào pho mát Cheddar. Trong nghiên cứu đó, sự cay đắng tăng cường này có liên quan đến hệ thống peptidases phức tạp của lactobacilli sử dụng. Bảng 5.4 cũng cho thấy rằng các điểm chấp nhận bị ảnh hưởng bởi các điểm chua-chua (r = -0,858, P = 0,003). Cấp cao hơn của sự cay đắng và phát triển của nhiều hương vị chua-acid mạnh trong pho mát Cheddar có chứa các nền văn hóa phụ trợ của lactobacilli đã được báo cáo của Lee et al. (1990) và Lynch et al. (1999). Lynch et al. (1999), tuy nhiên phát hiện ra rằng các điểm cay đắng chỉ cao hơn ở giai đoạn đầu của quá trình chín (lên đến 6 tháng); sau đó, các điểm cay đắng cho các loại pho mát với lactobacilli phụ trợ tương tự với những người không có lactobacilli bổ sung. Cả hai đều cay đắng và hương vị chua-acid của pho mát cần phải được kiểm soát để sản xuất pho mát probiotic với chất lượng chấp nhận được. Mặc dù có một sự tương quan đáng kể giữa Cheddary và acceptances điểm, ANOVA cho thấy điểm số Cheddary không có ý nghĩa khác nhau (P> 0,05) trong số các loại pho mát khác nhau (Bảng 5.3).

5.3.1. Relationship between compositional variables of Cheddar cheeses and their sensory characteristic

The results of the composition (percentage moisture, fat, protein, salt and pH), degree of proteolysis (percentage of WSN/TN, TCA-SN/TN, PTA-SN/TN, hydrolysis of αs1-casein and β-casein) and acetic acid concentration of Cheddar cheeses after ripening at 4oC for 9 months are shown in Table 5.5. Simple linear correlation between the mean scores of the specific attributes and the chemical analysis is shown in Table 5.6. No significant differences (P > 0.05) were observed among the experimental cheeses for the moisture, salt, fat and protein content, which confirmed our previous findings that addition of probiotic microorganisms has no direct effect on cheese composition (Chapter 3.0, section 3.3.1 & Chapter 4.0, section 4.3.1). The relationship between the main compositional variables (protein, fat, salt, moisture and pH) of the cheeses and their sensory characteristics were investigated (Table 5.6). There were no significant correlations between the composition variables (protein, salt and moisture content) of the cheeses and sensory attributes scores. The fat content of the cheeses tended to show positive but not significant correlation with the creamy scores of the cheeses (r = 0.627, P = 0.071). There were, however, negative and significant correlation between the fat content and mean scores for hardness (r = -0.731, P = 0.025). The pH of probiotic cheeses was in general lower than that of control cheese, but this did not influence the sour-acid scores of the cheeses. It is interesting to note, however, that vinegary scores were negatively and significantly correlated to the pH of the cheeses (r = -0.830, P = 0.006) (Table 5.6).

5.3.2. Relationship between acetic acid concentration and sensory attributes of Cheddar cheeses

 Concentrations of acetic acid in cheese with Bifidobacterium sp. (Batch 2 & 3), Lb. casei (Batch 4) and Lb. paracasei (Batch 5) after ripening at 4oC for 9 months were significantly higher (P < 0.05) as compared to the control cheese (Table 5.5). Lb. casei is known to produce acetic acid (Shihata & Shah, 2000). On the other hand, Bifidobacterium sp. produced acetic acid and lactic acid from lactose via a fructose-6-phosphate shunt pathway (Dinakar & Mistry, 1994) as described in Chapter 3.0 section 3.3.4. The level of acetic acid in the Cheddar cheeses was assessed during sensory evaluation as the level of vinegary taste as shown in Table 5.3. During the course of training, panelists’ average threshold of acetic acid was determined using a series of duo trio tests. It was found that their acetic acid threshold in water was less than 0.006% (v/v). The vinegary taste, however, was more difficult to be detected in the presence of other components such as fat, protein, acid and salt. When different concentrations of acetic acid were mixed into a product such as cream cheese, the detection threshold increased more than ten fold to 0.06% - 0.100% (v/w). The detection thresholds both in water and in cream cheese, however, were much lower than the concentration of acetic acid in experimental Cheddar cheeses (Table 5.5). Production and accumulation of acetic acid in the probiotic cheeses were reflected in the sensory scores. Although all cheeses with adjuncts probiotic organisms received higher vinegary attribute scores (Table 5.3), there was no significant correlation between vinegary and acceptability scores (Table 5.4). Similarly, there was no significant correlation between the mean scores of vinegary attribute and acetic acid concentration of the cheeses (r = 0.271, P = 0.481; Table 5.6). The result indicated that, although panelists were able to detect the presence of acetic acid in the probiotic Cheddar cheeses, they were unable to detect the differences in the concentration of acetic acid between different batches of cheeses. Results also indicated that the vinegary flavour of the cheeses in this study was still within the acceptable range.

5.3.3. Relationship between proteolytic pattern of Cheddar cheeses and their sensory characteristics

Higher levels of proteolysis were detected in probiotic cheeses after 9 months of ripening at 4oC as indicated by the release of more water-, TCA- and PTA-soluble peptides in the probiotic cheeses (Table 5.5). The soluble nitrogenous compounds provided by casein proteolysis contribute directly to cheese flavour and texture (Fox et al., 1993). These nitrogen fractions generally increased as cheeses aged, corresponding to the continued breakdown of casein and large peptides into small peptides and amino acids by the action of starter culture enzymes and residual rennet (Lau et al., 1991). The levels of proteolysis was particularly high in cheeses with the addition of Lb. casei 279 (Batch 4) and Lb. paracasei LAFTI®L26 (Batch 5), because both strains have considerably higher proteolytic activity (Chapter 4.0, section 4.2.5). At the end of the 9 months ripening period at 4oC, percentage hydrolysis of αs1- CN in all probiotic cheeses except B. longum 1941 (Batch 3) cheese was significantly higher (P < 0.05) than control cheeses. The increased proteolysis in probiotic cheeses showed that the cheeses ripened faster than controls. The results were expected to influence the Cheddary scores of the cheeses, but Table 5.3 shows that the Cheddary scores were not significantly different between batches. The scores of commercial cheeses used during the training session included 3.11 ± 0.54, 5.60 ± 0.41 and 8.90 ± 0.62 for “mild”, “tasty” and “vintage” cheeses, respectively. The average scores of Cheddary attributes as shown in Table 5.3 indicated that the experimental cheeses were comparable to the commercial “tasty” cheese. The findings also show that the probiotic adjuncts used in this study did not increase the level of perceived maturity. The control cheese, despite having lower WSN, TCA-SN and PTA-SN had a Cheddary score comparable to the probiotic cheeses (Table 5.3). Previously, excessive proteolysis was associated with the increase in bitterness (Lee et al., 1990). Table 5.6 shows that there was a positive and significant correlation between the scores of bitterness and the level of WSN (r = 0.755, P = 0.046). According to Lemieux and Simard (1992), bitterness develops when small to medium-size hydrophobic peptides produced by the coagulant and microbial enzymes accumulate to the levels that exceed desirable taste thresholds. Residue 193-209 of the C-terminal region of β-casein and residue 1-9 of the C-terminal region of as1-casein have been associated with bitterness in cheese (Lemieux & Simard, 1992). Reverse phase - HPLC chromatograms of the Cheddar cheeses in our study indicated the presence of β-casein (f 193-209) and as1-casein (f 1-9) (Chapter 6.0, section 6.3.4). Broadbent et al. (2002) performed regression analysis of bitter flavour scores from the trained sensory panel and concentration of β-casein (f 193-209) and as1- casein (f 1-9) and found that these peptides had positive correlation with bitterness. Hydrolysis of these peptides is associated with decreased bitterness in Cheddar cheese. The total area of the peak of these peptides during ripening is discussed in Chapter 6.0 section 6.3.5. A level of salt in moisture (S/M) > 4.5% is necessary to prevent the development of bitterness in cheese (Mistry & Kasperson, 1998). These ratios reflect the amount of free water available for microbial growth. A lower level of S/M and high water activities allow excessive bacterial growth, promote excessive proteolysis and lipolysis and in turn lead to defective body, texture (open, soft, greasy), flavour (unclean, bitter) and consumer unacceptability (Beresford & Williams, 2004). The moisture content of the experimental cheeses was slightly higher than average moisture content of commercial cheeses. The higher moisture content resulted in the lowering of the percentage of S/M. Although there was no significant difference (P > 0.05) between the salt content of the cheeses, some cheeses such as those with Lb. casei 279 (Batch 4) and Lb. paracasei LAFTI®L26 (Batch 5), had only about 4.3% S/M. The percentage of S/M would probably be one of the factors that contribute to the increase in bitterness. The most important contributor to the continuous casein matrix of a Cheddar cheese is αs1-CN (Lawrence et al., 1987), and hydrolysis of this casein is believed to be responsible for the softening of Cheddar cheese texture (Grappin et al., 1985). Cheese with the addition of B. longum 1941 (Batch 2), Lb. casei 279 (Batch 4) and Lb. paracasei LAFTI®L26 (Batch 5) received significantly lower hardness scores than the control (Table 5.3). The scores however did not influence the acceptability of the cheeses (Table 5.4) and no correlation was observed between the degree of proteolysis (percentage of WSN/TN, TCA-SN/TN, PTA-SN/TN) and panelists’ scores for hardness (Table 5.6).

5.4. Conclusions

Các chuyên gia đã nhận thấy tất cả các giác quan pho mát probiotic ngoại trừ việc với Lb. acidophilus 4962 được đáng kể khác với các pho-mát kiểm soát mà không có probiotic. Chấp nhận phô mai probiotic với Lb. casei 279 đã thấp hơn đáng kể hơn so với pho-mát kiểm soát với sự cay đắng và vị chua-acid như là khuyết điểm lớn. Nồng độ acid acetic trong pho mát với Bifidobacterium sp., Lb. casei 279 và Lb. paracasei LAFTI ® L26 cao hơn đáng kể so với pho mát kiểm soát. Giọng chua cay điểm, tuy nhiên, không đáng kể ảnh hưởng đến sự chấp nhận của pho mát và các chuyên gia đã không thể phát hiện nồng độ khác nhau của acid acetic giữa các lô khác nhau của pho mát. Nồng độ nitơ hòa tan và thủy phân casein đã cao hơn trong pho mát probiotic, nhưng tăng không đáng kể sự phân giải protein ảnh hưởng đến điểm số thuộc tính Cheddary của pho mát. Có, tuy nhiên, một tương quan tích cực và đáng kể giữa các điểm số của cay đắng và mức độ nitơ hòa tan trong nước. Mặc dù không có sự tương quan đáng kể giữa các biến thành phần (protein, muối và độ ẩm) và điểm số của các thuộc tính cảm quan, pho mát với tỷ lệ thấp nhất của S / M nhận được điểm số cao nhất cay đắng. Một số chủng được sử dụng trong nghiên cứu này có tiềm năng để sử dụng trong sản xuất pho mát Cheddar probiotic với chất lượng chấp nhận được.

EFFECT OF ADJUNCT LACTOBACILLUS STRAINS ON THE CHARACTERISTICS OF SWISS CHEESE MANUFACTURED USING THE LOW COOKING TEMPERATURE REQUIRED FOR KOSHERCERTIFIED WHEY

ABSTRACT

Though the use of Lactobacillus casei as an adjunct culture is common for Swisstype cheese manufactured in Switzerland, few published reports exist on adjunct use and none exist for adjunct use in U.S.-manufactured Swiss cheese. Our objective was to study the effect of nonstarter Lactobacillus strains as adjunct cultures on Swiss cheese characteristics. Selected nonstarter Lactobacillus strains isolated from commercial cheeses were utilized as adjunct cultures for cheese manufacture. Twelve cheeses were manufactured using a commercial starter combination and three previously isolated nonstarter Lactobacillus strains, L. casei A26, L. casei B21, and L. rhamnosus H2. Cheeses were analyzed during ripening for microbial and chemical composition. The use of adjunct cultures diminished high variability in total Lactobacillus counts in cheeses manufactured without adjunct addition. Lactobacillus casei strains were able to utilize 48 all citrate present in cheese before the end of the warm room ripening phase. There were no significant differences among cheeses in regards to protein, fat, moisture, and salt contents. The pH of the mature cheeses ranged from 5.4 to 5.5, and free amino acid concentration ranged from 5 to 7 mmol/kg cheese. Lactic, acetic, and propionic acid levels of cheeses were not significantly different. By the end of warm room, citric acid was depleted in cheeses manufactured with adjunct L. casei strains. Based on electronic nose and descriptive sensory results, cheeses made with adjunct L. casei strain A26 were more similar to control cheese in development of certain flavor attributes.

INTRODUCTION

Nonstarter lactobacilli have been used as adjunct cultures in cheese manufacture. Studies on experimental cheeses containing adjunct lactobacilli show improved flavor intensity and acceptability and higher levels of free amino acids when compared to control cheeses (Lynch et al., 1997). However, their effect can be positive, negative, or neutral depending on the strains that predominate and their roles during ripening (Crow et al., 2001; Kieronczyk et al., 2003; Swearingen et al., 2001). High concentrations of desirable nonstarter lactobacilli in cheese throughout ripening provides balanced flavor reactions and minimize the possible effects of undesirable adventitious nonstarter lactic acid bacteria (Crow et al., 2001). The interaction between lactobacilli and propionibacteria is also very important. Growth of Propionibacterium freudenreichii is required for the characteristic eye formation and flavor development in Swiss cheese. Increased proteolysis during ripening 49 and intense propionic acid fermentation may cause formation of splits and checks (Grappin et al., 1993; Jimeno et al. 1995; Noël et al. 1999). Certain L. casei and L. rhamnosus strains isolated from different cheese types in Switzerland were proven to inhibit the growth of P. freudenreichii when added as supplemental cultures during Emmentaler cheese production (Jimeno et al., 1995). Addition of nonstarter bacteria can affect the proteolysis in cheese. Comparison of experimental cheeses made with highly proteolytic starters and starters with weak proteolytic activity demonstrated that presence of high concentration of free amino acids inhibits the growth of propionibacteria (Baer, 1995). This inhibition may reduce the undesirable splits and cracks that can form later in ripening due to late gas production by propionibacteria. Facultatively heterofermentative nonstarter lactic acid bacteria are used in the Swiss artisanal cheese industry to slow down propionic acid fermentation. In Switzerland, a mixed culture composed of 3 L. casei strains from to the culture collection of Swiss Dairy Research Station, FAM Leebefeld, is generally sold to prevent late fermentation in Emmentaler cheeses. The inhibition mechanism is not yet clarified; however it is attributed to the inhibitory effect of excess formate and acetate on propionibacteria. Sensory analysis shows slightly poorer quality of cheeses made with addition of mixed L. casei culture, possibly due to higher acetate levels (Frohlich-Wyder, 2002). Though the use of L. casei as an adjunct culture is common for Swiss-type cheese manufactured in Switzerland, few published reports exist on adjunct use in Swiss cheese and none exist for adjunct use in U.S.-manufactured Swiss. Traditional Swiss cheese making involves cooking the curds in the whey at 123-137°F (Reinbold, 1972). Using 50 the “kosher make procedure”, cooking temperatures must be ≤120°F to allow for koshercertification of whey products derived from cheesemaking. This alteration in cooking temperature causes changes in the final cheese quality, such as rapid acid development during cheese making, increased split defects and high moisture (Gene Hong, 2002, personal communication; Bob Ramseyer, 2002., personal communication). Adjunct culture addition has potential to reduce vat to vat variability within the same manufacturing facility, and would allow the cheesemaker to control to some extent the effect of nonstarter cultures on cheese quality. The objective of this study was to examine the effect of adjunct Lactobacillus strains on microbial, chemical, and sensory characteristics of Swiss cheese manufactured using the “kosher make procedure”.

MATERIALS AND METHODS

Bacterial strains

Streptococcus thermophilus S787, L. helveticus L701, and P. freudenreichii subsp. shermani P728 cultures (Chr. Hansen Inc., Milwaukee, WI) were used as directvat- set starter cultures. Adjunct cultures were selected from 22 nonstarter lactobacilli previously isolated (see Chapter 2) based on their citrate utilization properties in broth and on agar plates. Lactobacillus casei A26, isolated from Swiss Emmental, utilizes citrate well. Lactobacillus casei B21 and L. rhamnosus H2 were both isolated from U.S.-manufactured Swiss cheeses, and utilized little or no citrate. 51 Nonstarter Lactobacillus cultures were grown overnight (18h) to stationary phase in Lactobacillus MRS broth (Criterion, Hardy Diagnostics, Santa Maria, Ca) washed twice in phosphate-buffered saline, and resuspended in sterile water immediately prior to inoculation into the cheese milk. Cultures were inoculated at approximately 103 CFU/ml milk to achieve >105 CFU/g cheese before brining (Pius Felder, 2002, personal communication).

Cheese manufacture

Twelve cheeses were manufactured in pilot plant scale using 200L capacity cheese vats (C.van’t Riet Dairy and Process Equipment, Aarlanderveen, The Netherlands) using the rindless block procedure modified to simulate the kosher make procedure (Kosikowski and Mistry 1997; Reinbold, 1972). The pilot-scale kosher make procedure was developed in consultation with two Swiss cheese companies that use this procedure commercially. Milk (100L) purchased from the Ohio State University Dairy Farm (Columbus, OH) was standardized to 1:1 true protein to fat ratio and pasteurized in the vat by holding at 63°C for 30 minutes. Prior to inoculation with starter cultures, the milk temperature was reduced to 34.4°C with gentle to moderate stirring. Nonstarter Lactobacillus cultures were added at approximately 103 CFU/ml milk. Starters were added according to culture supplier’s recommendations. Inoculated milk was ripened for 20 minutes and set with 8 g of coagulant Chy-max extra (Chr. Hansen Inc.) diluted in 40 ml of sterile water. After 25-30 min, the curd was cut slowly to fine curd size and heated to 47.5°C for about 30 minutes, and then held at 47.5°C with gentle agitation until the target pH value (6.45-6.55) was reached. The whey and the curd were pumped to 52 perforated stainless steel vessels dressed with disposable cheese cloth. The whey was drained by gradually adding weight (up to 20 kg) to create about 2 kg pressure per kg cheese (Gene Hong, 2002, personal communication). The cheese was pressed for 18 h at 37°C or until the pH decreased to approximately 5.25. A sample was taken from the center for pH and microbiological analysis. Subsequently, the cheese was divided into 4 equal size blocks and placed into brine solution (23% salt, 0.001% CaCl2, pH 5.4, 4-7°C) for 4 h. One of the four blocks was removed at each sampling time. After brining, the blocks were vacuum packaged to exclude air and to prevent the formation of a rind through contact with air during ripening and placed at 4-7°C for 6 days to allow for salt equilibration throughout the block. Following the pre-cooling, blocks were placed into plastic molds and stored in the “warm room” (21-22°C) for eye development. After 24 days in the warm room, cheeses were transferred to cold storage at 4-7°C for 2-6 months for ripening. In addition to standard cleaning and chemical sanitizing, all cheese making equipment (milk cans, cheese vats, stirrers, knives, cheese cloth, and pressing tables) was steam sterilized prior to each cheese making session to minimize environmental contamination and carry over of adjunct strains from day to day. Brine solution was prepared as a large batch and divided into 4 containers. Each container was designated for use with one adjunct treatment or control to avoid carry over of adjunct strains in the brine. 53

Cheese sampling

Samples were taken at day 1 (before brining), day 6 (end of pre-cool), day 30 (end of warm room), and at days 60 and 90 for microbial and chemical analyses. Compositional analyses were performed only on mature cheeses (day 60). For microbiological analysis and pH measurements a core sample was taken from the center of cheese block. For all other analyses, samples were taken from one of the 4 blocks resulted from each cheese, finely shredded and mixed to obtain uniformity. For descriptive sensory analysis, 90 day cheeses were vacuum packaged after removing one quarter of it for other analyses, and stored in cold room for approximately five months.

Microbiological analyses

Total lactobacilli and total bacterial counts were determined in cheese milk after pasteurization using Rogosa SL agar (Difco, Becton, Dickinson, and Co., Sparks, MD) and Plate Count Agar (Difco), respectively. Amount of adjunct strain and starter cultures were also enumerated by taking milk samples after culture addition. To monitor starter population in cheeses, a 1 g cheese sample aseptically removed from the center of cheese block was placed in 9 ml 2% sodium citrate solution and stomached at high speed for 2 minutes (Seward Stomacher Biomaster 80, Seward Co., Norfolk, UK). Subsequent ten-fold serial dilutions were prepared in 0.1% peptone water (Difco). Total lactobacilli were enumerated on Rogosa SL agar (Difco) incubated anaerobically for 2 days at 37°C. Streptococcus thermophilus was enumerated on M17 agar (Difco) containing 0.5% lactose and 0.15% lithium chloride incubated for 2 days at 54 42°C, and propionibacteria were enumerated on lithium glycerol agar (Madec et. al., 1996) incubated anaerobically for 7 days at 30°C. To monitor the adjunct culture population in cheeses during storage, one hundred colonies were randomly selected from Rogosa SL plates at each sampling time and inoculated on citrate differential medium (CDM; Kempler and McKay, 1980), BCPgluconate agar (Jenkins, 2005) and esculin cellobiose agar (ECA; Hunger, 1986). Each adjunct culture utilized in cheese manufacture shows a distinct colony appareance on these media. Presence of a colony color pattern indiscernible from that of the adjunct culture suggests the cultures tested are the adjunct cultures added and not the contaminating nonstarter lactobacilli. Colony colors of starter and adjunct Lactobacillus strains on each media are listed in Table 3.1.

Compositional analyses

Protein and fat contents were determined using near infrared spectroscopy (Near Infrared Analyzer KJT270, Kett US, Villa Park, CA) calibrated using conventional methods as follows: The protein content was determined using Kjeldahl method; nitrogen content was measured in a Kjeldahl analyzer, Tecator Kjeltec Auto Sampler system 1035 (Tecator AB, Hoganas, Sweden) and a protein conversion factor of 6.38 was used to calculate protein content of cheese samples. The Babcock method was used for fat content determination (Marshall, 1992). Moisture content was measured using the using a vacuum oven as described in AOAC method 926.08 (AOAC, 1987). Salt content was determined potentiometrically with a silver electrode 55 using the Chloride Analyzer 926 (Nelson Jameson, Marshfield, WI). pH was measured using the quinhydrone-gold electrode method (Marshall, 1992). Free amino acid content was determined with the Cd-ninhydrin reagent in a microtiter plate assay using L-leucine as the standard (Folkerstma and Fox, 1992; Baer et al., 1996). Organic acids were determined by HPLC (Agilent 1100, Agilent Technologies, Palo Alto, CA) using an Aminex HPX-87H Column (Biorad, Hercules, CA) with a multiple wavelength detector. Eight milliliters of grade S acetonitrile (Fisher) and 0.2 ml 1N H2SO4 were added to 1 g grated cheese sample, and mixed for 20 minutes in a rotary mixer. Cheese homogenates were then centrifuged at 8000 rpm for 20 minutes, and the supernatant was filtered through a MFS-13 filter. The volume of sample injected was 20 μl. The mobile phase was 10 mN H2SO4, prepared by diluting HPLC-grade H2SO4 (Fisher Scientific) with HPLC-grade water (Fisher Scientific) and then filtered through 0.2 μm membrane filter (Nalgene Nunc International, Rochester, NY). The flow rate of the mobile phase was 0.6 ml/min and the column temperature was constant at 65°C. Lactic, citric, and acetic acids were detected at 210 nm. Acetoin and propionic acids coeluted at this wavelength, therefore, a wavelength of 290 nm was used to detect acetoin separately and calculate propionic acid area. Concentrations of individual organic acids were quantified using peak areas of standard curves.

Electronic nose

Instrumental differentiation of cheese aroma was conducted using an Agilent Technologies Chem Sensor 4400, equipped with a headspace autosampler unit (HP 7649), and mass selective detector (MSD 9753) as a sensor operated in the negative 56 ionization mode, with methane as the ionizing gas. Shredded cheese samples (3 g) from days 1, 6, 30, 60, and 90 were placed in 20 ml headspace vials and capped with a Teflonfaced silicon rubber cap. Triplicate samples were randomly placed in the autosampler, each vial was equilibrated at 60°C for 30 minutes. The head space volatiles where then transferred to the GC equipped with a capillary column. Helium was used as the carrier gas at a pressure of 40 psi. One microliter of head space was introduced in a pulsed splitless mode, at 75 psi, 250°C. The column was set to 220°C for 6 minutes. A purge time of 1.5 minutes was used between samples.

Descriptive sensory analysis

Swiss cheeses were cut into one-inch cubes for descriptive sensory analysis. The cheeses were placed into 4-oz. soufflé cups with lids labeled with three-digit codes. The cheeses were tempered to 10°C and were served at this temperature. Descriptive analysis was conducted at North Carolina State University and used a 15 point universal intensity scale with the SpectrumTM method (Meilgaard et al., 1999; Drake and Civille, 2003) and a cheese flavor sensory language modified for Swiss cheese (Drake et al., 2001) (Table 3.2). A trained descriptive sensory panel (n=8) with over 150 hours of experience each with descriptive analysis of cheese flavor evaluated the cheeses. Consistent with SpectrumTM descriptive analysis training, panelists were presented with reference solutions of sweet, sour, salty, and bitter tastes to learn to consistently use the universal intensity scale (Meilgaard et al., 1999; Drake and Civille, 2003). Following consistent use of the Spectrum TM scale with basic tastes, panelists learned to identify and scale flavor descriptors using the same intensity scale through presentation and discussion of 57 flavor definitions, references (Table 3.2) and a wide array of cheeses. Discussion and evaluation of a wide array of cheeses (Swiss and other cheeses) was also conducted during training to enable panelists to consistently differentiate and replicate samples. Analysis of data collected from training sessions confirmed that panel results were consistent and that terms were not redundant, consistent with previous use of the developed language (Drake et al., 2001). Each replication of each cheese treatment was evaluated monadically in duplicate in a randomized balanced block design. Evaluations were conducted individually in an enclosed room dedicated to sensory analysis and free from external aromas, noise, and distractions. Panelists were instructed to expectorate samples after evaluation. Spring water was available to each panelist for palate cleansing.

Experimental design and statistical analysis

The experimental design was a truncated Latin square. Data were analyzed using the mixed model “PROC MIXED” of SAS software (Version 9.1. SAS Institute Inc., Cary, NC), according to the following statistical model: Yijk = μ + βi + Vj + Sk + εijk where Yijk is the dependent variable, μ is the mean, βi is the random effect of blocks (i = 1, 2 , 3, 4, 5, 6), Vj is the random effect of vats (j = 1, 2), Sk is the effect of strain (j = 1, 2, 3, 4), and εijk is the error term. Comparison of mean differences were analyzed using Tukey test (P<0.05). 58 Sensory data was analyzed using general linear model “PROC GLM” of SAS software. Comparison of means were performed using Fisher’s least significant difference (LSD) test (P<0.05).

RESULTS AND DISCUSSION

Effect of adjunct cultures on microbial composition

Changes in population of Lactobacillus spp., S. thermophilus, and Propionibacterium spp. during ripening in Swiss cheese manufactured with and without adjunct Lactobacillus sp. were determined (Figures 3.1, 3.2, 3.3., and 3.4). In all cases, the pasteurized cheese milk contained fewer than 101 CFU/ml (detection limit) of Lactobacillus spp., and total plate counts were at or below 102 CFU/ml. The initial inoculum level for all starters was between 4-5 log CFU/ml. Propionibacterium spp. counts followed the same pattern in all cheeses. There was an approximately 4-log increase during warm room incubation (day 6 to day 30), up to 8 log CFU/g cheese and the numbers were stable from thereon. In general, the Propionibacterium inoculation levels vary from 103 to 106 CFU/ml milk. Propionibacteria grow in Swiss cheese during ripening in the warm room and reach populations as high as 5 x109 CFU/g cheese (Noël, et al., 1999). Autolysis of Propionibacteria is generally late and limited (Valence et al 1998). Although the difference in propionibacteria counts at day 90 was not distinguishable, a slight tendency in increase of propionibacteria levels was observed in all cheeses, with the exception of the cheeses produced with adjunct L. casei strain A26 where there was no apparent 59 change in population. Most nonstarter lactic acid bacteria do not affect propionibacteria levels in cheese, although some strains of L. casei and L. plantarum reduce the propionic acid levels at the end of ripening by 13-38% (Martley and Crow, 1996; Bachmann et al., 1997). The influence of Lactobacillus spp. on propionibacteria growth is likely to be less important than the influence of technological parameters such as pH and salt in cheeses (Noël, 1999). Before brining, there was approximately 1 log difference in S. thermophilus levels between the control cheese (no adjunct) and cheeses manufactured with adjunct strains. In the control cheese and when L. casei B21 was utilized as adjunct culture, S. thermophilus counts decreased during warm room incubation. On the other hand, when L. casei A26 and L. rhamnosus H2 strains were used as adjunct culture, S. thermophilus counts did not start decreasing until after warm room incubation. The use of adjunct cultures decreased the high variation in S. thermophilus counts observed in control cheeses (Figure 3.4). Lactobacillus spp. growth pattern was similar in all cheeses manufactured with an adjunct strain. In general, an initial growth occurred in first day of cheese making, and the cell population increased from 104 CFU/ml milk to 107-108 CFU/g cheese before brining. The population remained constant throughout ripening or (as in the case of adjunct A26) increased to 108-109 CFU/g cheese by the end of warm room storage and remained constant throughout ripening. However, in control cheeses, the rapid increase in Lactobacillus spp. population before brining was followed by a decline in cell population during warm room storage, the population decreased to 105-106 CFU/g cheese by the end of 90-day ripening (Figures 3.1, 3.2, 3.3, and 3.4). 60 Turner et al. (1983) made Swiss cheese with L. helveticus, L. bulgaricus, and no Lactobacillus as a part of starter culture. Nonstarter lactic acid bacteria reached to levels greater than 106 CFU/g cheese. In cheeses manufactured with an adjunct Lactobacillus spp., the total lactobacilli population was dominated by the adjunct strain (Table 3.3). Potential benefits of adjunct cultures include predictable fermentation pattern, desired flavor/aroma development, consistency in cheese manufacture, and quality. In fact, select L. casei and L. rhamnosus strains are used in Switzerland to limit the secondary fermentation (Jimeno et al, 1995).

Effect of adjunct cultures on cheese composition

Protein, fat, moisture, and salt in moisture contents of the experimental cheeses were determined (Table 3.4). There were no significant differences (P≥0.05) among the cheeses manufactured with or without adjunct strains in regards to protein, fat, moisture, and salt in moisture contents. Protein, fat, and moisture contents of the cheeses were comparable to those of commercial cheese samples (see Chapter 4). Salt in moisture content was higher than commercial cheese samples. Commercial cheeses are manufactured in larger size and require longer time in brine and in pre-cooling stage to attain the salt equilibrium. As the salt penetrates from the outside and progressively reaches the center of the cheese, a maximum salt gradient of 4-5 fold from the periphery to the center is common (Mocquot, 1979). French Emmental cheeses contain 0.4-0.7% salt (0.7-1.2% salt in moisture based on 40% moisture) on average, however, salt distribution is not even and salt levels reach up to 1.8% (3% SMP) in the rind (Noël, 1999). In U.S. Swiss cheeses with 0.8-3% salt in moisture content are manufactured, 61 however, most manufacturers currently target no higher than 1.0% salt in moisture levels (Gene Hong, 2002, personal communication). The salt concentration in the moisture phase of three U.S.-produced and four European-produced Swiss-style cheeses ranged from 0.54 to 1.83% and from 0.86 to 4.52% in U.S.- and European produced cheeses, respectively (Anggreani, 2004). Salt in moisture content is very important in Swiss cheese manufacture. Salt can affect mechanical properties and disturb eye formation because of its effects on water mobility, mineral balance, water-protein-mineral interactions, enzyme activities, and bacterial growth (Noël, 1999). Change in cheese pH during ripening was monitored using quinhydrone-gold electrode method. The pH of one day cheese ranged from 5.15 to 5.29 and was in the target pH range of 5.2-5.3. The day-1 cheese pH is important because of its effects on the structural state of protein before brining and cooling, eye formation is promoted between pH 5.15-5.45, and CO2 production increases with pH (Lawrence et al. 1987). By the end of 90-day ripening, pH values increased up to 5.4-5.5 (Figure 3.5). Lowest increase in pH was observed in control cheeses. Total free amino acid concentrations of the cheeses increased 5 to 7-fold from the beginning of warm room until the end of 90-day ripening (Figure 3.6). Up to 60-day ripening, cheeses manufactured with adjunct strain L. casei A26 followed a similar free amino acid development pattern with the control cheeses. In the same way, cheeses made with adjunct strains L. casei B21 and L. rhamnosus H2 followed a similar pattern. Initial free amino acid concentrations of the cheeses were the same. At the end of 60 days cheese made with adjunct L. rhamnosus H2 had the lowest free amino acid concentration. Between day 60 and 90, free amino acid concentrations of cheeses made with adjunct L. 62 casei strain B21 followed an increasing trend, whereas concentrations in control cheeses and cheeses made with adjunct strains L. casei A26 and L. rhamnosus H2 remained unchanged. The concentrations of free amino acids in 60 day ripened cheeses were comparable to free amino acid levels in commercial Swiss cheeses (Chapter 4). A higher increase in free amino acid concentration would be expected in cold room ripening because thermophilic lactic acid bacteria release their active peptidase pool at this stage. (Steffen et al. 1996; Gagnaire et al. 1998). Instead, free amino acid concentrations increases at greatest rate during warm room ripening. This could be related to decrease in starter Lactobacillus sp. population. Organic acid contents of cheeses were determined at each time point (Figure 3.7). Citric acid concentrations of cheeses manufactured with L. casei strains as adjunct cultures were lower than other cheeses at day 1 and citric acid was depleted by the end of warm room. Depletion of citric acid by the end of warm room incubation is desirable to minimize late fermentation by lactic acid bacteria during cold room storage during which citrate can be consumed by nonstarter lactic acid bacteria with formation of diacetyl and CO2 (Jimeno et al., 1995). Even though initial citrate levels in milk were not quantified, the lower citric acid concentration at day 1 can be explained by citrate utilization by adjunct L. casei strains. The cheeses made with adjunct L. rhamnosus strain and the control cheeses contained 10-15 mg citrate/100g cheese at the end of warm room and during 90-day ripening. Decrease in lactic acid and increase in acetic acid concentrations followed similar patterns in all cheeses during cheese ripening. Even though no significant differences in propionic acid concentrations were observed at day 90, cheeses 63 differed in propionic acid levels at day 60. The cheeses made with L. casei A26 had the lowest propionic acid level (2.42 mg/g) followed by L. casei B21 (3.33 mg/g), and L. rhamnosus H2 (3.84 mg/g). Average organic acid concentrations for 60 day old good quality Emmental cheeses are 500-800 mg propionate and 200-400 mg acetate/100g cheese. In a variety of Swiss-type cheeses, 293-656 mg propionic acid, and 202-413 mg/100g acetic acid concentrations are reported (Noël, 1999). In general, a propionic:acetic molar ratio of 2 is expected. At day 60, all cheeses combined, acetic acid and propionic acid concentrations were 143 and 339 mg/100g cheese, respectively, with a molar ratio approaching the theoretical value of 2:1.

Electronic nose

The formation of aroma in cheese is a complex process and influenced to a great extent by cheese microflora (Marilley et al., 2004). Electronic nose is a promising alternative for rapid discrimination of cheeses based on volatile/aroma compounds. Electronic nose based on mass spectrometry has been used to effectively differentiate different process cheeses, and Emmental cheeses from various European countries (Pillonel et al., 2003). This method has also been successfully used to discriminate between lactic acid bacteria at the strain level (Marilley et al., 2004). Changes in abundance of four mass units 73, 85, 86, and 87 believed to be important in Swiss cheeses differentiation are presented in Figure 3.8. Tentative identification of compounds for each units are propionic acid for mass 73, diacetyl for mass 85, valeraldehyde/isovaleraldehyde for mass 86, and butyric/isobutyric acid for mass 87 (Drake et al., 2003; Marilley et al., 2004). Control cheese and cheeses 64 manufactured with adjunct strain L. casei A26 were not significantly different for the abundance of the four mass units and followed the same pattern throughout ripening. There was no significant difference in propionic acid (mass 73) abundance among the cheeses. Cheeses made with adjunct strain L. rhamnosus H2 had more diacetyl, butyric/isobutyric acid, and valeraldehyde/isovaleraldehyde then the other cheeses.

Descriptive sensory analysis

Treatment means for the 18 flavor attributes utilized for descriptive sensory analysis are shown in Table 3.5. There were no significant differences in dried fruit, bitter, salty, and prickle flavors among the cheeses. There were significant differences in the intensities of young undeveloped flavors (Drake et al., 2003), cooked and whey between the control cheeses and the cheeses made with adjunct strain A26. Higher diacetyl flavor perception would be expected in cheeses made with adjuncts that can utilize citrate since citrate is considered main diacetyl precursor (Jimeno, 1995). However, no significant differences were detected among the control cheese and cheeses made with adjunct L. casei strains. Even though citrate is considered main diacetyl precursor, and P. freudenreichii subsp shermanii metabolizes citrate partly, diacetyl and acetoin were not detected by NMR-imaging on cheeses made using this strain in starter culture (Deborde, 1998). Cheeses made with adjunct strains did not differ significantly from the control cheese in terms of free fatty acid/butyric acid flavor. This is an expected result, because, propionibacteria are more influential on lipolysis, and no significant differences should be observed in free fatty acid tones (Perreard and Chamba, 2002). Nutty flavor is an important characteristic of Swiss type 65 cheeses. Cheeses made with adjunct cultures were less nutty than the control cheese. Cheese manufactured with adjunct strain L. casei A26 had a higher nutty note than the other cheeses manufactured with adjuncts. The cheeses made with adjunct strain L. casei A26 had more fresh fruit flavor compared to other cheeses. In agreement with electronic nose results, the cheeses made with adjunct strain L. rhamnosus H2 had more diacetyl flavor. In conclusion, selected nonstarter Lactobacillus strains isolated from commercial cheeses were utilized as adjunct cultures for cheese manufacture. Citric acid concentrations of cheeses manufactured with adjunct L. casei strains were depleted by the end of the warm room ripening phase. Propionic acid leves were lower in cheeses made with adjunct L. casei strains. Control cheeses had lower pH during ripening. There were no significant differences among cheeses in regards to protein, fat, moisture, and salt contents. However, sensory properties were affected. Cheeses made with adjunct cultures had lower scores for nutty flavor.

EFFECT OF ADJUNCT LACTOBACILLUS STRAINS ON THE CHARACTERISTICS OF SWISS CHEESE MANUFACTURED USING THE LOW COOKING TEMPERATURE REQUIRED FOR KOSHERCERTIFIED WHEY

ABSTRACT

Mặc dù việc sử dụng Lactobacillus casei như là một nền văn hóa phụ trợ được phổ biến cho Swisstype pho mát được sản xuất tại Thụy Sĩ, vài báo cáo được công bố tồn tại về sử dụng thuốc hỗ trợ và không tồn tại để sử dụng thuốc hỗ trợ trong pho mát Thụy Sĩ US-sản xuất. Mục tiêu của chúng tôi là nghiên cứu tác động của các chủng Lactobacillus nonstarter như nền văn hóa phụ trợ trên các đặc điểm pho mát Thụy Sĩ. Lựa chọn các chủng Lactobacillus phân lập từ pho mát nonstarter thương mại được sử dụng như là nền văn hóa phụ trợ cho sản xuất pho mát. Mười hai pho mát được sản xuất bằng cách sử dụng một sự kết hợp thương mại khởi và ba trước đó bị cô lập các chủng Lactobacillus nonstarter, L. casei A26, L. casei B21, và L. rhamnosus H2. Pho mát đã được phân tích trong quá trình chín cho các thành phần vi sinh vật và hóa học. Việc sử dụng thuốc hỗ trợ giảm bớt các nền văn hóa đa dạng cao trong tổng số lượng Lactobacillus trong sản xuất pho mát mà không cần thêm thuốc hỗ trợ. Các chủng Lactobacillus casei đã có thể sử dụng 48 bài citrate có trong pho mát trước khi kết thúc giai đoạn chín phòng ấm. Không có sự khác biệt đáng kể giữa các loại pho mát trong trường hợp các protein, độ ẩm, chất béo, muối và nội dung. Độ pH của những loại pho mát trưởng thành trong khoảng 5,4-5,5, và nồng độ axit amin tự do trong khoảng 5-7 mmol / kg pho mát. Lactic, acetic, và mức độ axít prôpionic của pho mát là không đáng kể. Đến cuối phòng ấm áp, acid citric là cạn kiệt trong pho mát được sản xuất với các chủng phụ trợ L. casei. Căn cứ vào mũi điện tử và kết quả cảm giác mô tả, pho mát làm từ phụ trợ L. casei chủng A26 có nhiều pho mát tương tự để kiểm soát sự phát triển của các thuộc tính hương vị nhất định.

INTRODUCTION

lactobacilli Nonstarter đã được sử dụng như là nền văn hóa phụ trợ trong sản xuất pho mát. Các nghiên cứu về pho mát thử nghiệm có chứa lactobacilli thuốc hỗ trợ hiển thị cường độ cải thiện hương vị và sự chấp nhận và cấp độ cao hơn của các axit amin tự do khi so sánh để kiểm soát pho mát (Lynch và cộng sự, 1997.). Tuy nhiên, hiệu quả của chúng có thể tích cực, tiêu cực, hoặc trung tính tùy thuộc vào chủng mà chiếm ưu thế và vai trò của họ trong quá trình chín (Crow và cộng sự, 2001;. Kieronczyk và cộng sự, 2003;. Swearingen và cộng sự, 2001.). Nồng độ cao của lactobacilli mong muốn nonstarter trong pho mát trong suốt quá trình chín cung cấp phản ứng hương vị cân bằng và giảm thiểu những tác động không mong muốn có thể có của vi khuẩn acid lactic ngẫu nonstarter (Crow và cộng sự, 2001.). Sự tương tác giữa lactobacilli và propionibacteria cũng rất quan trọng. Tăng trưởng của Propionibacterium freudenreichii là cần thiết cho sự hình thành và phát triển mắt hương vị đặc trưng trong pho mát Thụy Sĩ. Tăng cường sự phân giải protein trong quá trình chín 49 và lên men acid mạnh prôpionic có thể gây ra sự hình thành của chia tách và kiểm tra (Grappin et al, 1993;. Jimeno và cộng sự năm 1995;. Noël và cộng sự năm 1999.). Một số L. casei và L. rhamnosus chủng phân lập từ các loại pho mát khác nhau ở Thụy Sĩ đã được chứng minh để ức chế sự tăng trưởng của freudenreichii P. khi thêm vào như là nền văn hóa bổ sung trong quá trình sản xuất pho mát Emmentaler (Jimeno và cộng sự, 1995.). Bổ sung vi khuẩn nonstarter thể ảnh hưởng đến sự phân giải protein trong pho mát. So sánh các loại pho mát thử nghiệm được thực hiện với người mới bắt đầu phân giải protein cao và bắt đầu với hoạt động phân giải protein yếu chứng minh rằng sự hiện diện của nồng độ cao của các axit amin tự do ức chế sự tăng trưởng của propionibacteria (Baer, 1995). Điều này có thể làm giảm sự ức chế không mong muốn chia tách và các vết nứt có thể tạo thành sau này trong quá trình chín do sản xuất khí đốt cuối của propionibacteria. Facultatively heterofermentative nonstarter vi khuẩn lactic được sử dụng trong ngành công nghiệp pho mát Thụy Sĩ tận thu để làm chậm quá trình lên men axít prôpionic. Ở Thụy Sĩ, một nền văn hóa hỗn hợp gồm 3 chủng L. casei từ các bộ sưu tập văn hóa của Thụy Sĩ sữa Trạm nghiên cứu, FAM Leebefeld, thường được bán ra để ngăn chặn quá trình lên men trễ trong pho mát Emmentaler. Các cơ chế ức chế là chưa làm rõ, tuy nhiên đó là do tác dụng ức chế của format dư thừa và acetate vào propionibacteria. Phân tích cảm quan cho thấy chất lượng hơi kém hơn của pho mát làm từ hỗn hợp bổ sung các văn hóa L. casei, có thể là do mức độ cao hơn acetate (Frohlich-Wyder, 2002). Mặc dù việc sử dụng của L. casei như là một nền văn hóa phụ trợ được phổ biến cho loại pho mát Thụy Sĩ sản xuất tại Thụy Sĩ, vài báo cáo được công bố tồn tại về sử dụng thuốc hỗ trợ trong pho mát Thụy Sĩ và không tồn tại để sử dụng thuốc hỗ trợ sản xuất tại Mỹ-Thụy Sĩ. Truyền thống làm pho mát Thụy Sĩ liên quan đến việc nấu sữa đông trong sữa ở 123-137 ° F (Reinbold, 1972). Sử dụng 50 các "kosher làm thủ tục", nhiệt độ nấu ăn phải được ≤ 120 ° F để cho phép các sản phẩm sữa koshercertification bắt nguồn từ cheesemaking. Điều này thay đổi nhiệt độ trong nấu ăn gây ra những thay đổi về chất lượng pho mát cuối cùng, chẳng hạn như phát triển nhanh chóng trong thời gian làm acid phô mai, tăng khuyết tật chia và độ ẩm cao (Gene Hồng, năm 2002, cá nhân liên lạc;. Bob Ramseyer, năm 2002, cá nhân giao tiếp). Ngoài ra thuốc hỗ trợ văn hóa có tiềm năng để giảm thùng để thùng biến đổi trong cùng một cơ sở sản xuất, và sẽ cho phép các cheesemaker để kiểm soát một số phạm vi ảnh hưởng của nền văn hóa nonstarter về chất lượng pho mát. Mục tiêu của nghiên cứu này là để kiểm tra tác động của các chủng Lactobacillus thuốc hỗ trợ về hóa học, vi sinh vật, và các đặc tính cảm quan của sản xuất pho mát Thụy Sĩ sử dụng "kosher làm thủ tục".

MATERIALS AND METHODS

Bacterial strains

Streptococcus thermophilus S787, L. helveticus L701, và P. freudenreichii subsp. shermani P728 nền văn hóa (Chr. Hansen Inc, Milwaukee, WI) đã được sử dụng như directvat đặt nền văn hóa khởi. nền văn hóa phụ trợ đã được lựa chọn từ 22 lactobacilli nonstarter trước đó bị cô lập (xem Chương 2) dựa trên các tài sản sử dụng citrate trong nước dùng và trên đĩa thạch. Lactobacillus casei A26, phân lập từ Thụy Sĩ Emmental, sử dụng cũng citrate. B21 và L. casei Lactobacillus rhamnosus H2 đã được cả hai phân lập từ US-sản xuất pho mát Thụy Sĩ, và sử dụng citrate ít hoặc không có. 51 Nonstarter nền văn hóa Lactobacillus được trồng qua đêm (18giờ) để pha tĩnh trong nước dùng MRS Lactobacillus (Tiêu chí, Hardy Diagnostics, Santa Maria, Ca) rửa hai lần trong nước muối phosphate-đệm, và resuspended trong nước vô trùng ngay lập tức trước khi tiêm vào sữa pho mát. Nền văn hóa đã được tiêm phòng tại khoảng 103 CFU / ml sữa để đạt được> 105 CFU / g pho mát trước khi xông (Pius Felder, năm 2002, cá nhân giao tiếp).

Nghe

Đọc ngữ âm

Cheese manufacture

Mười hai pho mát được sản xuất ở quy mô nhà máy thử nghiệm sử dụng thùng công suất pho mát 200L (C.van 't Riet sữa và quá trình thiết bị, Aarlanderveen, Hà Lan) sử dụng các thủ tục khối rindless sửa đổi để mô phỏng các kosher làm thủ tục (Kosikowski và Mistry năm 1997; Reinbold, 1972). Các kosher quy mô thí điểm làm thủ tục đã được phát triển tham vấn với hai công ty pho mát Thụy Sĩ sử dụng thủ tục này thương mại. Sữa (100L) mua từ trường Đại học Ohio State Dairy Farm (Columbus, OH) đã được chuẩn hóa protein thực 1:1 đến tỷ lệ chất béo và thanh trùng trong thùng bằng cách giữ ở 63 ° C trong 30 phút. Trước khi tiêm với các nền văn hóa khởi, nhiệt độ sữa đã được giảm xuống 34,4 ° C với nhẹ nhàng để vừa khuấy. nền văn hóa Nonstarter Lactobacillus được thêm vào khoảng 103 CFU / ml sữa. Mới bắt đầu được thêm vào theo đề xuất của nhà cung cấp văn hóa. sữa nhiễm đã chín trong 20 phút và thiết lập với 8 g tối đa đông-CHY thêm (Chr. Hansen Inc) pha loãng trong 40 ml nước vô trùng. Sau 25-30 phút, sữa đông đã được cắt giảm từ từ để mô sữa đông tốt và nóng đến 47,5 o C trong khoảng 30 phút, và sau đó được tổ chức tại 47,5 ° C với vận động nhẹ nhàng cho đến khi giá trị pH mục tiêu (6,45-6,55) đã đạt được. Các sữa và sữa đông đã được bơm đến 52 tàu thép không gỉ đục mặc quần áo với vải dùng một lần. whey đã được thoát nước dần dần thêm trọng lượng (lên đến 20 kg) để tạo ra áp lực khoảng 2 kg / kg pho mát (Gene Hồng, năm 2002, cá nhân giao tiếp). pho mát được ép trong 18 giờ ở 37 ° C hoặc cho đến khi độ pH giảm xuống khoảng 5,25. Một mẫu được lấy từ các trung tâm phân tích độ pH và vi sinh. Sau đó, các pho mát được chia thành 4 khối kích thước bằng nhau và đặt vào trong dung dịch nước muối (23% muối, 0,001% CaCl2, 5.4 pH, 4-7 ° C) trong 4 h. Một trong bốn khối đã được gỡ bỏ ở mỗi thời gian lấy mẫu. Sau khi xông, các khối đã được đóng gói hút chân không để loại trừ không khí và ngăn ngừa sự hình thành của vỏ một qua tiếp xúc với không khí trong quá trình chín và đặt ở 4-7 ° C trong 6 ngày để cho phép cân bằng muối trong cả khối. Sau khi làm lạnh trước, khối được đặt vào khuôn nhựa và được lưu trữ trong "căn phòng ấm" (21-22 ° C) cho sự phát triển của mắt. Sau 24 ngày trong căn phòng ấm áp, pho mát đã được chuyển giao cho kho lạnh ở 4-7 ° C cho 2-6 tháng đối với quá trình chín. Ngoài ra để làm sạch và khử trùng tiêu chuẩn hóa, tất cả các thiết bị làm pho mát (lon sữa, pho mát thùng, stirrers, dao, vải pho mát, và bàn cách nhấn) là hơi khử trùng trước mỗi phiên làm pho mát để giảm thiểu ô nhiễm môi trường và thực hiện trên các chủng phụ trợ từ ngày này sang ngày khác. dung dịch nước muối đã được chuẩn bị như một lô lớn và chia thành 4 container. Mỗi container được chỉ định để sử dụng với điều trị thuốc hỗ trợ một hoặc kiểm soát để tránh thực hiện trên các chủng phụ trợ trong nước muối vào.

Cheese sampling

Các mẫu được lấy tại ngày 1 (trước khi xông), ngày 6 (cuối trước khi mát), ngày 30 (cuối căn phòng ấm áp), và tại ngày 60 và 90 để phân tích vi sinh vật và hóa học. phân tích sáng tác được thực hiện chỉ trên pho mát trưởng thành (ngày 60). Đối với phân tích vi sinh và pH đo lường một mẫu lõi đã được đưa từ trung tâm của khối pho mát. Đối với tất cả các phân tích khác, các mẫu được lấy từ một trong 4 khối là kết quả của từng pho mát, thái vụn và trộn để có được thống nhất. Đối với phân tích cảm giác mô tả, 90 pho mát ngày đã được đóng gói hút chân không sau khi loại bỏ một phần tư của nó để phân tích khác, và được lưu giữ trong phòng lạnh khoảng năm tháng.

Microbiological analyses

Total lactobacilli and total bacterial counts were determined in cheese milk after pasteurization using Rogosa SL agar (Difco, Becton, Dickinson, and Co., Sparks, MD) and Plate Count Agar (Difco), respectively. Amount of adjunct strain and starter cultures were also enumerated by taking milk samples after culture addition. To monitor starter population in cheeses, a 1 g cheese sample aseptically removed from the center of cheese block was placed in 9 ml 2% sodium citrate solution and stomached at high speed for 2 minutes (Seward Stomacher Biomaster 80, Seward Co., Norfolk, UK). Subsequent ten-fold serial dilutions were prepared in 0.1% peptone water (Difco). Total lactobacilli were enumerated on Rogosa SL agar (Difco) incubated anaerobically for 2 days at 37°C. Streptococcus thermophilus was enumerated on M17 agar (Difco) containing 0.5% lactose and 0.15% lithium chloride incubated for 2 days at 54 42°C, and propionibacteria were enumerated on lithium glycerol agar (Madec et. al., 1996) incubated anaerobically for 7 days at 30°C. To monitor the adjunct culture population in cheeses during storage, one hundred colonies were randomly selected from Rogosa SL plates at each sampling time and inoculated on citrate differential medium (CDM; Kempler and McKay, 1980), BCPgluconate agar (Jenkins, 2005) and esculin cellobiose agar (ECA; Hunger, 1986). Each adjunct culture utilized in cheese manufacture shows a distinct colony appareance on these media. Presence of a colony color pattern indiscernible from that of the adjunct culture suggests the cultures tested are the adjunct cultures added and not the contaminating nonstarter lactobacilli. Colony colors of starter and adjunct Lactobacillus strains on each media are listed in Table 3.1.

Compositional analyses

Protein and fat contents were determined using near infrared spectroscopy (Near Infrared Analyzer KJT270, Kett US, Villa Park, CA) calibrated using conventional methods as follows: The protein content was determined using Kjeldahl method; nitrogen content was measured in a Kjeldahl analyzer, Tecator Kjeltec Auto Sampler system 1035 (Tecator AB, Hoganas, Sweden) and a protein conversion factor of 6.38 was used to calculate protein content of cheese samples. The Babcock method was used for fat content determination (Marshall, 1992). Moisture content was measured using the using a vacuum oven as described in AOAC method 926.08 (AOAC, 1987). Salt content was determined potentiometrically with a silver electrode 55 using the Chloride Analyzer 926 (Nelson Jameson, Marshfield, WI). pH was measured using the quinhydrone-gold electrode method (Marshall, 1992). Free amino acid content was determined with the Cd-ninhydrin reagent in a microtiter plate assay using L-leucine as the standard (Folkerstma and Fox, 1992; Baer et al., 1996). Organic acids were determined by HPLC (Agilent 1100, Agilent Technologies, Palo Alto, CA) using an Aminex HPX-87H Column (Biorad, Hercules, CA) with a multiple wavelength detector. Eight milliliters of grade S acetonitrile (Fisher) and 0.2 ml 1N H2SO4 were added to 1 g grated cheese sample, and mixed for 20 minutes in a rotary mixer. Cheese homogenates were then centrifuged at 8000 rpm for 20 minutes, and the supernatant was filtered through a MFS-13 filter. The volume of sample injected was 20 μl. The mobile phase was 10 mN H2SO4, prepared by diluting HPLC-grade H2SO4 (Fisher Scientific) with HPLC-grade water (Fisher Scientific) and then filtered through 0.2 μm membrane filter (Nalgene Nunc International, Rochester, NY). The flow rate of the mobile phase was 0.6 ml/min and the column temperature was constant at 65°C. Lactic, citric, and acetic acids were detected at 210 nm. Acetoin and propionic acids coeluted at this wavelength, therefore, a wavelength of 290 nm was used to detect acetoin separately and calculate propionic acid area. Concentrations of individual organic acids were quantified using peak areas of standard curves.

Electronic nose

Instrumental differentiation of cheese aroma was conducted using an Agilent Technologies Chem Sensor 4400, equipped with a headspace autosampler unit (HP 7649), and mass selective detector (MSD 9753) as a sensor operated in the negative 56 ionization mode, with methane as the ionizing gas. Shredded cheese samples (3 g) from days 1, 6, 30, 60, and 90 were placed in 20 ml headspace vials and capped with a Teflonfaced silicon rubber cap. Triplicate samples were randomly placed in the autosampler, each vial was equilibrated at 60°C for 30 minutes. The head space volatiles where then transferred to the GC equipped with a capillary column. Helium was used as the carrier gas at a pressure of 40 psi. One microliter of head space was introduced in a pulsed splitless mode, at 75 psi, 250°C. The column was set to 220°C for 6 minutes. A purge time of 1.5 minutes was used between samples.

Descriptive sensory analysis

pho mát Thụy Sĩ đã được cắt thành hình khối một-inch để phân tích cảm giác mô tả. Các loại pho mát được đặt vào oz-4. Bánh phồng ly với nắp đậy có gắn nhãn có mã số ba chữ số. Các loại pho mát đã nóng đến 10 ° C và được phục vụ ở nhiệt độ này. phân tích mô tả đã được thực hiện tại Đại học Bắc Carolina và được sử dụng là 15 thang điểm cường độ phổ quát với các phương pháp SpectrumTM (Meilgaard và cộng sự, 1999;. Drake và Civille, 2003) và một hương vị pho mát ngôn ngữ giác quan sửa đổi cho pho mát Thụy Sĩ (Drake et al. , 2001) (Bảng 3.2). Một đào tạo mô tả cảm giác của bảng điều khiển (n = 8) với hơn 150 giờ kinh nghiệm từng có phân tích mô tả của hương vị pho-mát đánh giá pho mát. SpectrumTM mô tả phù hợp với phân tích đào tạo, tham luận được trình bày với các giải pháp tham chiếu của ngọt, mặn, chua, và có vị đắng để học cách kiên trì sử dụng quy mô cường độ phổ quát (Meilgaard và cộng sự, 1999;. Drake và Civille, 2003). Sau sử dụng phù hợp về quy mô Spectrum TM với thị hiếu cơ bản, các chuyên gia đã học được để xác định và quy mô các mô tả hương vị bằng cách sử dụng cùng một cường độ quy mô thông qua các bài trình bày và thảo luận của 57 định nghĩa hương vị, tài liệu tham khảo (Bảng 3.2) và hàng loạt các loại pho mát. Thảo luận và đánh giá của một mảng rộng các loại pho mát (Thụy Sĩ và các loại pho mát) cũng được tiến hành trong thời gian đào tạo để cho phép các chuyên gia đã phải luôn phân biệt và tái tạo mẫu. Phân tích dữ liệu thu thập từ các khóa đào tạo đã xác nhận rằng kết quả của bảng điều khiển đã được thống nhất và điều khoản không cần thiết, phù hợp với sử dụng trước đó của ngôn ngữ phát triển (Drake và cộng sự, 2001.). Mỗi bản sao của từng điều trị pho mát được đánh giá monadically tại sao trong một thiết kế khối ngẫu nhiên cân bằng. Đánh giá được thực hiện riêng rẽ trong một phòng kín dành riêng cho phân tích cảm quan và không hương liệu bên ngoài, tiếng ồn, và phiền nhiễu. Tham luận viên được hướng dẫn để khạc nhổ mẫu sau khi đánh giá. Mùa xuân nước đã có sẵn cho mỗi panelist để làm sạch vòm miệng.

Experimental design and statistical analysis

The experimental design was a truncated Latin square. Data were analyzed using the mixed model “PROC MIXED” of SAS software (Version 9.1. SAS Institute Inc., Cary, NC), according to the following statistical model: Yijk = μ + βi + Vj + Sk + εijk where Yijk is the dependent variable, μ is the mean, βi is the random effect of blocks (i = 1, 2 , 3, 4, 5, 6), Vj is the random effect of vats (j = 1, 2), Sk is the effect of strain (j = 1, 2, 3, 4), and εijk is the error term. Comparison of mean differences were analyzed using Tukey test (P<0.05). 58 Sensory data was analyzed using general linear model “PROC GLM” of SAS software. Comparison of means were performed using Fisher’s least significant difference (LSD) test (P<0.05).

RESULTS AND DISCUSSION

Effect of adjunct cultures on microbial composition

Changes in population of Lactobacillus spp., S. thermophilus, and Propionibacterium spp. during ripening in Swiss cheese manufactured with and without adjunct Lactobacillus sp. were determined (Figures 3.1, 3.2, 3.3., and 3.4). In all cases, the pasteurized cheese milk contained fewer than 101 CFU/ml (detection limit) of Lactobacillus spp., and total plate counts were at or below 102 CFU/ml. The initial inoculum level for all starters was between 4-5 log CFU/ml. Propionibacterium spp. counts followed the same pattern in all cheeses. There was an approximately 4-log increase during warm room incubation (day 6 to day 30), up to 8 log CFU/g cheese and the numbers were stable from thereon. In general, the Propionibacterium inoculation levels vary from 103 to 106 CFU/ml milk. Propionibacteria grow in Swiss cheese during ripening in the warm room and reach populations as high as 5 x109 CFU/g cheese (Noël, et al., 1999). Autolysis of Propionibacteria is generally late and limited (Valence et al 1998). Although the difference in propionibacteria counts at day 90 was not distinguishable, a slight tendency in increase of propionibacteria levels was observed in all cheeses, with the exception of the cheeses produced with adjunct L. casei strain A26 where there was no apparent 59 change in population. Most nonstarter lactic acid bacteria do not affect propionibacteria levels in cheese, although some strains of L. casei and L. plantarum reduce the propionic acid levels at the end of ripening by 13-38% (Martley and Crow, 1996; Bachmann et al., 1997). The influence of Lactobacillus spp. on propionibacteria growth is likely to be less important than the influence of technological parameters such as pH and salt in cheeses (Noël, 1999). Before brining, there was approximately 1 log difference in S. thermophilus levels between the control cheese (no adjunct) and cheeses manufactured with adjunct strains. In the control cheese and when L. casei B21 was utilized as adjunct culture, S. thermophilus counts decreased during warm room incubation. On the other hand, when L. casei A26 and L. rhamnosus H2 strains were used as adjunct culture, S. thermophilus counts did not start decreasing until after warm room incubation. The use of adjunct cultures decreased the high variation in S. thermophilus counts observed in control cheeses (Figure 3.4). Lactobacillus spp. growth pattern was similar in all cheeses manufactured with an adjunct strain. In general, an initial growth occurred in first day of cheese making, and the cell population increased from 104 CFU/ml milk to 107-108 CFU/g cheese before brining. The population remained constant throughout ripening or (as in the case of adjunct A26) increased to 108-109 CFU/g cheese by the end of warm room storage and remained constant throughout ripening. However, in control cheeses, the rapid increase in Lactobacillus spp. population before brining was followed by a decline in cell population during warm room storage, the population decreased to 105-106 CFU/g cheese by the end of 90-day ripening (Figures 3.1, 3.2, 3.3, and 3.4). 60 Turner et al. (1983) made Swiss cheese with L. helveticus, L. bulgaricus, and no Lactobacillus as a part of starter culture. Nonstarter lactic acid bacteria reached to levels greater than 106 CFU/g cheese. In cheeses manufactured with an adjunct Lactobacillus spp., the total lactobacilli population was dominated by the adjunct strain (Table 3.3). Potential benefits of adjunct cultures include predictable fermentation pattern, desired flavor/aroma development, consistency in cheese manufacture, and quality. In fact, select L. casei and L. rhamnosus strains are used in Switzerland to limit the secondary fermentation (Jimeno et al, 1995).

Effect of adjunct cultures on cheese composition

Protein, fat, moisture, and salt in moisture contents of the experimental cheeses were determined (Table 3.4). There were no significant differences (P≥0.05) among the cheeses manufactured with or without adjunct strains in regards to protein, fat, moisture, and salt in moisture contents. Protein, fat, and moisture contents of the cheeses were comparable to those of commercial cheese samples (see Chapter 4). Salt in moisture content was higher than commercial cheese samples. Commercial cheeses are manufactured in larger size and require longer time in brine and in pre-cooling stage to attain the salt equilibrium. As the salt penetrates from the outside and progressively reaches the center of the cheese, a maximum salt gradient of 4-5 fold from the periphery to the center is common (Mocquot, 1979). French Emmental cheeses contain 0.4-0.7% salt (0.7-1.2% salt in moisture based on 40% moisture) on average, however, salt distribution is not even and salt levels reach up to 1.8% (3% SMP) in the rind (Noël, 1999). In U.S. Swiss cheeses with 0.8-3% salt in moisture content are manufactured, 61 however, most manufacturers currently target no higher than 1.0% salt in moisture levels (Gene Hong, 2002, personal communication). The salt concentration in the moisture phase of three U.S.-produced and four European-produced Swiss-style cheeses ranged from 0.54 to 1.83% and from 0.86 to 4.52% in U.S.- and European produced cheeses, respectively (Anggreani, 2004). Salt in moisture content is very important in Swiss cheese manufacture. Salt can affect mechanical properties and disturb eye formation because of its effects on water mobility, mineral balance, water-protein-mineral interactions, enzyme activities, and bacterial growth (Noël, 1999). Change in cheese pH during ripening was monitored using quinhydrone-gold electrode method. The pH of one day cheese ranged from 5.15 to 5.29 and was in the target pH range of 5.2-5.3. The day-1 cheese pH is important because of its effects on the structural state of protein before brining and cooling, eye formation is promoted between pH 5.15-5.45, and CO2 production increases with pH (Lawrence et al. 1987). By the end of 90-day ripening, pH values increased up to 5.4-5.5 (Figure 3.5). Lowest increase in pH was observed in control cheeses. Total free amino acid concentrations of the cheeses increased 5 to 7-fold from the beginning of warm room until the end of 90-day ripening (Figure 3.6). Up to 60-day ripening, cheeses manufactured with adjunct strain L. casei A26 followed a similar free amino acid development pattern with the control cheeses. In the same way, cheeses made with adjunct strains L. casei B21 and L. rhamnosus H2 followed a similar pattern. Initial free amino acid concentrations of the cheeses were the same. At the end of 60 days cheese made with adjunct L. rhamnosus H2 had the lowest free amino acid concentration. Between day 60 and 90, free amino acid concentrations of cheeses made with adjunct L. 62 casei strain B21 followed an increasing trend, whereas concentrations in control cheeses and cheeses made with adjunct strains L. casei A26 and L. rhamnosus H2 remained unchanged. The concentrations of free amino acids in 60 day ripened cheeses were comparable to free amino acid levels in commercial Swiss cheeses (Chapter 4). A higher increase in free amino acid concentration would be expected in cold room ripening because thermophilic lactic acid bacteria release their active peptidase pool at this stage. (Steffen et al. 1996; Gagnaire et al. 1998). Instead, free amino acid concentrations increases at greatest rate during warm room ripening. This could be related to decrease in starter Lactobacillus sp. population. Organic acid contents of cheeses were determined at each time point (Figure 3.7). Citric acid concentrations of cheeses manufactured with L. casei strains as adjunct cultures were lower than other cheeses at day 1 and citric acid was depleted by the end of warm room. Depletion of citric acid by the end of warm room incubation is desirable to minimize late fermentation by lactic acid bacteria during cold room storage during which citrate can be consumed by nonstarter lactic acid bacteria with formation of diacetyl and CO2 (Jimeno et al., 1995). Even though initial citrate levels in milk were not quantified, the lower citric acid concentration at day 1 can be explained by citrate utilization by adjunct L. casei strains. The cheeses made with adjunct L. rhamnosus strain and the control cheeses contained 10-15 mg citrate/100g cheese at the end of warm room and during 90-day ripening. Decrease in lactic acid and increase in acetic acid concentrations followed similar patterns in all cheeses during cheese ripening. Even though no significant differences in propionic acid concentrations were observed at day 90, cheeses 63 differed in propionic acid levels at day 60. The cheeses made with L. casei A26 had the lowest propionic acid level (2.42 mg/g) followed by L. casei B21 (3.33 mg/g), and L. rhamnosus H2 (3.84 mg/g). Average organic acid concentrations for 60 day old good quality Emmental cheeses are 500-800 mg propionate and 200-400 mg acetate/100g cheese. In a variety of Swiss-type cheeses, 293-656 mg propionic acid, and 202-413 mg/100g acetic acid concentrations are reported (Noël, 1999). In general, a propionic:acetic molar ratio of 2 is expected. At day 60, all cheeses combined, acetic acid and propionic acid concentrations were 143 and 339 mg/100g cheese, respectively, with a molar ratio approaching the theoretical value of 2:1.

Electronic nose

The formation of aroma in cheese is a complex process and influenced to a great extent by cheese microflora (Marilley et al., 2004). Electronic nose is a promising alternative for rapid discrimination of cheeses based on volatile/aroma compounds. Electronic nose based on mass spectrometry has been used to effectively differentiate different process cheeses, and Emmental cheeses from various European countries (Pillonel et al., 2003). This method has also been successfully used to discriminate between lactic acid bacteria at the strain level (Marilley et al., 2004). Changes in abundance of four mass units 73, 85, 86, and 87 believed to be important in Swiss cheeses differentiation are presented in Figure 3.8. Tentative identification of compounds for each units are propionic acid for mass 73, diacetyl for mass 85, valeraldehyde/isovaleraldehyde for mass 86, and butyric/isobutyric acid for mass 87 (Drake et al., 2003; Marilley et al., 2004). Control cheese and cheeses 64 manufactured with adjunct strain L. casei A26 were not significantly different for the abundance of the four mass units and followed the same pattern throughout ripening. There was no significant difference in propionic acid (mass 73) abundance among the cheeses. Cheeses made with adjunct strain L. rhamnosus H2 had more diacetyl, butyric/isobutyric acid, and valeraldehyde/isovaleraldehyde then the other cheeses.

Descriptive sensory analysis

Điều trị có nghĩa là cho các hương vị 18 thuộc tính được sử dụng để phân tích cảm giác mô tả được thể hiện trong Bảng 3.5. Không có sự khác biệt quan trọng trong trái cây khô, mặn, cay đắng, và gai hương vị giữa các loại pho mát. Có sự khác biệt đáng kể về cường độ của trẻ chưa phát triển hương vị (Drake và cộng sự, 2003.), Nấu chín và sữa giữa các loại pho mát kiểm soát và các loại pho mát làm từ A26 chủng bổ sung. Diacetyl cao nhận thức hương vị sẽ được dự kiến trong pho mát làm từ adjuncts có thể sử dụng citrate từ citrate được coi là tiền thân chính diacetyl (Jimeno, 1995). Tuy nhiên, không có khác biệt đáng kể đã được phát hiện trong số các pho-mát kiểm soát và pho mát làm từ các chủng phụ trợ L. casei. Mặc dù citrate được coi là tiền thân chính diacetyl, và P. freudenreichii subsp shermanii chuyển hóa một phần citrate, diacetyl và acetoin đã không được phát hiện bởi hình ảnh-NMR về pho mát làm bằng cách sử dụng dòng trong văn hóa starter (Deborde, 1998). Pho mát làm từ các chủng phụ trợ không khác biệt đáng kể so với các pho mát kiểm soát về acid béo tự do / hương vị axit butyric. Đây là kết quả mong đợi, bởi vì, propionibacteria có nhiều ảnh hưởng trên lipolysis, và không có sự khác biệt quan trọng cần được quan sát trong tấn acid béo tự do (Perreard và Chamba, 2002). Hương vị hấp dẫn này là một đặc tính quan trọng của các loại pho mát Thụy Sĩ 65. Pho mát làm từ các nền văn hóa phụ trợ ít hấp dẫn hơn so với pho mát kiểm soát. Pho mát được sản xuất với chủng phụ trợ L. casei A26 đã có một lưu ý hấp dẫn cao hơn các loại pho mát khác sản xuất với adjuncts. Các loại pho mát làm từ chủng phụ trợ L. casei A26 có hương vị trái cây tươi hơn so với các loại pho mát khác. Trong thỏa thuận với kết quả mũi điện tử, các loại pho mát làm từ chủng phụ trợ L. H2 rhamnosus có nhiều hương vị diacetyl. Trong kết luận, lựa chọn các chủng Lactobacillus phân lập từ pho mát nonstarter thương mại được sử dụng như là nền văn hóa phụ trợ cho sản xuất pho mát. nồng độ acid citric của pho mát được sản xuất với các chủng L. casei phụ trợ đã bị cạn kiệt vào cuối căn phòng ấm áp giai đoạn chín. Leves propionic axit thấp trong pho mát làm từ các chủng phụ trợ L. casei. Kiểm soát pho mát có độ pH thấp hơn trong quá trình chín. Không có sự khác biệt đáng kể giữa các loại pho mát trong trường hợp các protein, độ ẩm, chất béo, muối và nội dung. Tuy nhiên, tính chất cảm quan đã bị ảnh hưởng. Pho mát làm từ các nền văn hóa phụ trợ có điểm số thấp hơn cho hương vị hấp dẫn.

Lactobacillus strains isolated from Danbo cheese as adjunct cultures in a cheese model system

Abstract

Isolates of NonStarter Lactic Acid Bacteria (NSLAB) from six ripened Danbo cheeses of different ages and of different brands were examined. Special emphasis was on the genus Lactobacillus with the aim of investigating their role in cheese maturation. Thirty three isolates were typed by the PCR-based method, Randomly Amplified Polymorphic DNA (RAPD). Ten RAPD types were found and 70% of the isolates were of RAPD types found in more than one cheese. The different RAPD types were identified to species level by Temporal Temperature Gradient Gel Electrophoresis (TTGE). Most of the isolates were identified as Lactobacillus paracasei (76%), but also Lactobacillus curvatus, Lactobacillus plantarum, Lactobacillus rhamnosus and some taxa originating from the starter culture were detected. In one cheese, no lactobacilli were found. One strain of the most frequent Lactobacillus RAPD type from each of the five cheeses with a Lactobacillus flora was used as adjunct cultures in a cheese model system. Four of the five adjuncts were reisolated during ripening. Two adjunct containing model cheeses received higher flavour scores than the control while two other were associated with off-flavours. The two model cheeses with off-flavour had a similar microflora and both were after 13 weeks of ripening dominated by a strain identified as L. plantarum.

1. Introduction

Mesophilic undefined starters, with mixed species of Lactococcus lactis and Leuconostoc mesenteroides subsp. cremoris, are commonly used in Scandinavian cheese production. The starter culture grows to high numbers in the cheese during the first day and then decreases in viable count throughout ripening, at a rate dependent on strain characteristics (Vegarud et al., 1983). As the starter bacteria decrease in number, a spontaneous secondary microbial flora grows in the maturing cheese and after 1–3 months it is dominating the microflora (Ardo¨ , 1993). These spontaneously growing NonStarter Lactic Acid Bacteria (NSLAB) presumably originate from the milk, ingredients used for cheese making or the dairy environment (Martley and Crow, 1993).  The NSLAB found in Swedish and Norwegian semi-hard cheese produced from pasteurised cow’s milk belong to the genus Lactobacillus and especially Lactobacillus casei/paracasei (Lindberg et al., 1996). Lactobacilli also constitute the majority of the NSLAB found in Danish Danbo cheese (Kristensen, 1970) and in Cheddar cheese (Peterson and Marshall, 1990). The role of NSLAB in Cheddar cheese has been reviewed (Peterson and Marshall, 1990; Fox et al., 1996), and it is significant in the mid to later stages of ripening. This has been demonstrated in cheese making trials where different treatments of the cheese milk have lead to differences in the secondary microflora and consequently also to differences in flavour (McSweeney et al., 1993; Beuvier et al., 1997; Skeie and Ardo¨ , 2000). With the aim of improving cheese quality or accelerating cheese ripening, selected lactobacilli have been added as adjunct cultures to pasteurised cheese milk (Fox et al., 1996). This can lead to increased flavour intensity of the cheese or to specific flavour notes (Lee et al., 1990; Lynch et al., 1996; Ferna´ndez-Espla and Fox, 1998) but also to decreased flavour quality (Lee et al., 1990). Moreover, different Lactobacillus species are associated with defective cheese. For example, they might cause excessive amounts of gas, calcium lactate crystals and biogenic amines. Hence, a successful adjunct should both suppress the NSLAB, as these might have negative effects, and have a specific effect to improve cheese quality. In general, NSLAB may contribute to flavour development by the action of peptidolytic enzymes, which results in an increased amount of smaller peptides and free amino acids in the cheese (Olson, 1990). Increased amounts of free amino acids have been correlated to a generally increased intensity of cheese flavour (Ardo¨ and Petterson, 1988). Differences in the composition of free amino acids have been associated with the raw milk microflora in model cheese trials (Skeie and Ardo¨ , 2000). The effect of some amino acids on the flavour are well known, for example, the sweet taste of proline and the broth taste of glutamic acid (Mulder, 1952). However, flavours can also be related to amino acid catabolism, where the best known is the production of methanethiol from cysteine and methionine (Weimer et al., 1999; Yvon and Rijnen, 2001). The catabolic pathways for all amino acids are not fully understood (Christensen et al., 1999; Weimer et al., 1999). Presumably, a generally increased amount of amino acids acts both as flavour enhancers and as flavour precursors. Concerning NSLAB, amino acid catabolism is believed to have an important role in their ability to obtain energy in nutrient limited environments, for example, in maturing cheese (Christensen et al., 1999). Danbo is a Danish semi-hard cheese variety with small round eyes that is made with an undefined mesophilic DL- starter including species of the genus Lactococcus and L. mesenteroides subsp. cremoris. Danbo is ripened with smeared surfaces and the ripening period is commonly only around 6–9 weeks, but there are also more mature Danbo varieties on the market. The microflora of six different Danbo cheeses were examined, with special emphasis on the genus Lactobacillus. Model cheeses were produced with different single isolates to clarify their role as adjunct cultures.

2. Material and methods

2.1. Danbo cheese samples

For isolation of bacterial strains, six Danbo cheeses of different brands, which were declared to be young or mature, were purchased in food stores. They were organoleptically assessed by four expert graders as typical Danbo cheeses, with some different characteristics for each brand within the variation for Danbo (Table 1).

2.2. Microbiological sampling of Danbo cheeses

Samples for microbiological analyses were aseptically taken from the centre of the cheese. An aliquot of 10 g of the samples was transferred to a sterile stomacher bag and mixed with 90 ml 20 g/l sodium citrate solution in a Stomacher (Seaward Medical, London SE1 1PP, UK) for 2.5 min. After dilution in petone/saline solution, viable counts were analysed on: Brain Heart Infusion agar (BHI; DIFCO, Meylan cedex, France) incubated for 4 days at 28 jC (mesophilic aerobic and anaerobic count), Rogosa agar supplemented with 1.36 ml/l acetic acid (OXOID, Basingstoke, Hampshire, England) incubated anaerobically for 4 days at 28 jC. Anaerobic incubations were done in anaerobic jars (BBL GasPak Anaerobic system, Becton Dickinson Microbiology Systems, Cockeysville, MD, USA).

2.3. Isolation of microorganisms from cheese

Six isolates were picked from the viable count plates of each Danbo cheese, three from Rogosa agar, two from BHI agar, incubated anaerobically, and one from BHI agar, incubated aerobically. All isolates were randomly picked from plates containing more than 30 colonies.

2.4. Typing of isolates

 All isolates were characterised by Gram reaction by the KOH method (Gregersen, 1978), catalase reaction (5% H2O2), cell morphology and motility determined by phase contrast microscopy. The method of Randomly Amplified Polymorphic DNA (RAPD), performed according to Quednau et al. (1998), was used to type isolates. Crude cell extracts were prepared from overnight cultures at 28 jC in 1 ml BHI for isolates from the BHI agar plates and in 1 ml LCM for isolates from the Rogosa agar plates. The cells of the pure culture were washed twice in 1 ml sterile Milli-QR water (Millipore, Molsheim, France), and disrupted in an Eppendorf tube with glass beads (2 mm in diameter) using an Eppendorf Mixer (Mod. 5432; Eppendorf, Hamburg, Germany). The primer sequence was 5V-ACGCGCCCT-3V and it was used at a concentration of 15 AM in the reaction mixture. The RAPD procedure resulted in a suitable number of distinct bands on the gels for the presently typed lactobacilli, as previously has been shown for Lactobacillus plantarum (Johansson et al., 1995). The band patterns of the gels were analysed with Pearson product moment correlation coefficient (r) and the Unweighted Pair Group Method with Arithmetic averages (UPGMA; Romesburg, 1984) by using Gel Compark 4.0 (Applied Maths, Kortrijk, Belgium). The computerised cluster analysis of the RAPD patterns was controlled by a visual comparison of the original photos of RAPD patterns of isolates within one cluster. Isolates of each Lactobacillus RAPD type were identified to the species level by Temporal Temperature Gradient gel Electrophoresis (TTGE) by comparing the TTGE profiles of isolates with that of amplicons from type strains, according to Va´sques et al. (2001).

2.5. Cheese model system

Strains of the genus Lactobacillus, isolated from the sampled Danbo cheeses, were used as adjunct cultures in a cheese model system. One strain representing the most frequent RAPD type of lactobacilli of each of the sampled Danbo cheeses (five strains) was used. Model cheeses were made of cheese grains from the production of Herrga°rd cheese. Herrga°rd is produced with a mesophilic DL-starter including undefined strains of the genera Lactococcus and Leuconostoc (Ardo¨ , 1993). The cheese grains were carefully separated from the whey after ‘‘cooking’’ at 39 jC during routine production at a cheese making plant. One batch yielded 10 model cheeses containing the same adjunct, inoculated with 105 colony forming units (cfu) of adjunct culture per gram of cheese grains. The adjuncts had been grown in Lactobacillus  carrying medium (LCM; Efthymiou and Hansen, 1962) and stored in glycerol buffer at _80 jC. Before use they were diluted to about 1 ml in physiological saline solution. To obtain cheese grains in the same physical stage for the different batches, these were collected from different vats of cheese manufacture at exactly the same time in production. To estimate the variation in microbial flora of the cheese grains from different vats, bacteria from different cheese grains used for different batches of model cheeses were isolated from Rogosa agar supplemented with 1.36 ml acetic acid and typed by RAPD. Dry salting and inoculation of the cheese grains were performed within a bench-hood supplied with sterile  filtered nitrogen gas. About 2 kg of cheese grains was gently mixed with salt and the adjunct culture. Approximately 150 g of inoculated and salted cheese grains were transferred to plastic jars in which they were pressed and stored. The salted and inoculated cheese grains were transferred to a 300 ml sterile plastic jar in which they were pressed at 40 jC according to the following scheme: 0–10 min at 160 kg/m2, 10–20 min at 450 kg/m2 and 20–80 min at 740 kg/m2. Pressing was performed with a plastic piston placed in the jar with weights added on top. After pouring off the whey, the model cheeses in the bottom of the jars were kept for 60 min at 37 jC, 1 day at 22 jC, 2–14 days at 18 jC and from 2 weeks at 10–12 jC. Model cheeses were covered with wax after 1 week. They were analysed with regard to pH after 24 h using pH meter (PHM 62, Radiometer, Copenhagen, Denmark), moisture (AOAC method 962.08) and salt content (AOAC method 15.160). The model cheeses were sampled in duplicate (two replicates) for microbiological and cheese ripening analysis after 2 days, 6.5 weeks and 13 weeks, and for sensory properties after 13 weeks of ripening. Analysis of moisture and salt content was done after 17 weeks ripening on two replicates.

2.6. Microbiological sampling and analysis of model cheeses

After sampling and dilution in physiological saline/ peptone solution, mesophilic viable counts (aerobic and anaerobic) and Lactobacillus spp. were analysed as described in Section 2.2. Lactococcus spp. was monitored as cocci on M17 Agar (MERCK, Darmstadt, Germany) incubated aerobically for 2 days at 22 jC. Yeasts were monitored on Yeast extract Glucose Chloramphenicol agar (YGC; MERCK) incubated aerobically for 4 days at 25 jC and moulds were monitored on Potato Dextrose Agar (PDA; DIFCO, Detroit, MI, USA) supplemented with tartaric acid incubated for 4 days at 22 jC. Colonies were studied for morphology by phase contrast microscopy. Samples from 2-day-old model cheeses were analysed on Calcium Citrate Agar (KCA; Kemikalia, Lund, Sweden) and X-gal (KEBOlab, Lund, Sweden) for discriminating between the viable counts of starter bacteria able to use citrate and those that were citratenegative. The agar was used as previously described by Vogensen et al. (1987) and the count of citratepositive colonies were recorded as colonies with a clear zone.

2.7. Isolation and typing of microorganisms from model cheeses

The different cheese grains used for the separate batches of model cheeses were analysed for their content of lactobacilli. Further, RAPD typing of isolates (performed as described in Section 2.4) was done to control the presence of the adjunct in the model cheese microflora. Three colonies were randomly picked from the Rogosa plate of each batch for RAPD typing. From samples taken after 6.5 weeks of ripening, isolates were randomly picked from the anaerobically incubated Rogosa and BHI plates, with more than 30 colonies. Two randomly selected colonies were picked from each BHI plate and from Rogosa plates with colonies of homogeneous appearance. Three colonies were randomly picked from Rogosa plates with colonies of heterogeneous appearance. Additionally after 13 weeks, two randomly selected colonies were also picked from M17 agar.

2.8. Reisolation criteria

The RAPD patterns of the isolates from model cheeses made with the same adjunct were compared with the RAPD pattern of isolates from the control and the corresponding adjunct. The RAPD patterns of isolates from the cheese grains used for the current cheese making batch were also included in the comparison. The reisolation was considered positive if the adjunct clustered together with isolates from the corresponding model cheese (identical RAPD types) and separate from isolates from the control model cheeses.

2.9. Cheese ripening analysis

Samples for cheese ripening analysis were taken at three occasions, after 2 days, 6.5 weeks and 13 weeks. Two of the model cheeses from each of the six different batches were analysed at each age. Casein components were analysed in a citrate dispersion of cheese using capillary electrophoresis (CE; Ardo¨ and Polychroniadou, 1999). Peptides of the pH 4.6 soluble fraction of cheese were analysed with reversed phase HPLC (RP-HPLC; Ardo¨ and Gripon, 1995). Samples were filtered (0.42 Am) before injection of 50 Al onto the column (Nucleosil 5 Am C18, 250 _4.6 mm; Microlab, A ° rhus, Denmark). Free amino acids (FAA) were determined by RP-HPLC using derivatisation with o-phtaldialdehyde (OPA) for the primary amino groups and, in the same sample, fluorenylmethyl chloroformate (FMOC) for the secondary amino group of proline (Bu¨tikofer and Ardo¨ , 1999). The column used was Hypersil ODS 250_4 mm (Aglient Technologies, Birkerød, Denmark). Peptides and amino acids were analysed with equipment by Waters, Alliance and Millenium software (Waters, Hedehusene, Denmark).

2.10. Sensory analyses

The model cheeses were graded with reference to Swedish semi-hard cheese and had no specified sensory standards. Thus, sensorial comparisons were restricted to the control model cheeses (without adjunct). The panel was trained for and experienced in evaluation of Swedish semi-hard cheese. In order to achieve uniform grading on the general descriptors used, discussions were held at an interval of about two model cheeses, with unaltered protocols. If the same or similar comment was made about the same model cheese by more than one grader, this was noted in the overall protocol. The model cheeses were blind tested and labelled with a randomly selected three-digit number. Model cheeses were tempered to 17 jC prior to grading. The procedure for sensory analyses aimed at estimating the maturity of the flavour of model cheeses with adjunct cultures, as compared to the control (without adjunct) and to detect off-flavours and defects caused or prohibited by the adjunct. Model cheeses were graded after 13 weeks by five graders on duplicate samples of model cheeses with different adjuncts and the control (without adjunct). Eight different attributes were used: odour, texture, flavour quality, distinctiveness, mature flavour, freshness, intensity of off-flavours and overall quality, on a hedonic scale (0–10).

2.11. Data analysis

Analyses of significant differences of amino acids in model cheese were made by calculating confidence intervals using the t-distribution. Principal Component Analysis (PCA) was performed using Unscrambler 7.5 (camo ASA, Oslo, Norway). The data set of free amino acids was weighted by dividing each response by its standard deviation. The score plot was tested by hotelling T2 ellips. Full cross validation was used for validating the data set.

3. Results

3.1. Viable counts in Danbo and RAPD typing of isolates

The bacterial viable counts on BHI agar (incubated aerobic and anaerobic) were 6.7–6.8 log cfu/g in the younger cheeses, with exception of cheese D4, in which it was 7.4 log cfu/g. The viable count of lactobacilli was around 6.6 in cheeses D1 and D2 and 7.0 log cfu/g in cheese D4 while no lactobacilli were found in cheese D3. The two mature cheeses (D5 and D6) had aerobic viable counts of 5.8 log cfu/g and anaerobic viable counts of 6.4 log cfu/g. The viable counts of lactobacilli in these cheeses were 5.8 log cfu/g. In five out of the six cheeses, the microflora was dominated by Lactobacillus strains, while only gram positive, catalase negative, non motile cocci (starter bacteria) were found in cheese D3. The 33 isolates from the six Danbo cheeses could be grouped into 10 different RAPD types (Fig. 1). The RAPD patterns are shown in Fig. 2. Starter bacteria represented one of these types while all the others were Lactobacillus spp. Of the nine Lactobacillus RAPD types, three consisted of a single strain, three were clusters with isolates from only one cheese and three were clusters with isolates from three different cheeses (Table 2). About 2/3 of the isolates were of RAPD types found in more than one cheese. Especially, all isolates from cheese D4 were of the same RAPD type (Table 2). Seven RAPD types were identified by TTGE as Lactobacillus paracasei (25 isolates) and two of the One membered clusters as Lactobacillus curvatus and Lactobacillus rhamnosus, respectively (Fig. 1). One RAPD type could be identified as L. plantarum by its typical RAPD pattern (two isolates; Table 2). Among isolates from the five Danbo cheeses in which lactobacilli were detected, five different isolates were selected for use as adjunct cultures in a cheese model system. The selected strains represented the most frequent RAPD types of NSLAB isolated from the sampled Danbo cheeses (Table 2).

3.2. Model cheeses manufactured with different adjuncts

The compositional analyses of model cheeses after 17 weeks of ripening showed a mean moisture content of 42.1% (w/w; range 40.4–44.4) and a mean salt inmoisture ratio of 3.59 (range 3.38–3.77). pH was in the interval 5.3–5.4, in all model cheeses (results not shown).

3.3. Viable counts and reisolation

In 2-day-old model cheeses, the viable count of starter bacteria was 8.0–8.5 log cfu/g and the ratio between starter bacteria utilising lactose or lactose and citrate was 1:1. The average viable count of Lactobacillus was 6.5 log cfu/g in model cheeses with an adjunct and 6.0 log cfu/g in the control (without adjunct). During ripening there were indications of that the viable counts were higher in inoculated model cheeses, especially the viable counts of Lactobacillus, with exception of model cheese M2 (Table 3). The microflora of model cheese M1 was dominated by the adjunct after 6.5 and 13 weeks of ripening. In model cheeses M2 and M4, the different adjuncts were reisolated from selective agar after 6.5 weeks and they dominated the microflora after 13 weeks. The adjunct added to model cheese M6 was only reisolated after 13 weeks, at which time it dominated the microflora. The added adjunct was not reisolated from model cheese M5 that after 13 weeks were dominated by a L. plantarum strain. The microflora of model cheeses M5 and M6 developed similarly and was after 6.5 weeks dominated by the same RAPD type. This RAPD type was also detected in model cheeses M2 and M4.

3.4. Proteolysis

No differences were found in the results of the CE of casein components and RP-HPLC of pH 4.6 soluble peptides between model cheeses with different adjuncts and the control (without adjunct). PCA of the CE results grouped the model cheeses in three distinct groups, one for each cheese age analysed (results not shown). However, PCA of the amino acid composition showed differences between model cheeses with different adjuncts that increased during ripening (Fig. 3). PC1 explained 85% of the variation and PC2 explained 7% of the variation, i.e. correlation to duration of ripening and adjunct culture, respectively. Especially, the amounts of serine were undetectable or much lower in model cheeses M5 and M6 than in the others (Table 4).

3.5. Sensory analysis

The trends seen in the sensory analysis were that model cheeses M1 and M2 received higher scores for flavour quality than the control after 13 weeks of ripening. Further, off-flavours were most pronounced in model cheeses M5 and M6 (Table 5), which were described as pungent or bitter by the graders.

4. Discussion

L. paracasei was the most frequently isolated bacteria from the analysed Danbo cheeses, which agree with previous studies of Swedish and Norwegian cheese (Lindberg et al., 1996) and Cheddar cheese (Williams and Banks, 1997; Fitzsimons et al., 1999), though L. plantarum has been reported to be the main NSLAB in some Cheddar cheeses (Peterson and Marshall, 1990). L. curvatus has been found at lower frequencies in both Cheddar (Fitzsimons et al., 1999) and artisan starter free cheese (Lo´pez and Mayo, 1997). Although there is a general occurrence of L. paracasei among NSLAB held in common for several cheese varieties, it appears as if the RAPD types of NSLAB varies between cheeses made at different dairies (Fitzsimons et al., 1999; Antonsson et al., 2001), though, in the present study, 21 out of the 30 isolated NSLAB strains were of RAPD types found in cheese from more than one Dairy. Cheese without NSLAB, as in cheese D3, is rarely reported in cheeses manufactured in full scale from pasteurised milk. One explanation could bee extremely good manufacturing procedures. Another explanation might be antimicrobial activities of the starter culture used. This finding strengthens the role of NSLAB in cheese ripening as being responsible for flavour notes and intensification of cheese flavour rather than essential for the cheese flavour development that has previously been demonstrated for Cheddar (Reiter et al., 1967) and Gouda (Kleter, 1976). A majority (four out of five) of the isolates used as adjunct cultures were reisolated from the corresponding model cheeses. The L. plantarum strain used was only reisolated on the last sampling occasion, which interestingly agreed with that it was isolated from the most matured Danbo cheese. In model cheeses M5 and M6, serine was only detected after 13 weeks of ripening, and then in small amounts compared to model cheeses M1, M2 and M3. The microflora of model cheeses M5 and M6 was similar and after 13 weeks, both were dominated by the same RAPD type (L. plantarum). Moreover, also after 6.5 weeks, these model cheeses were dominated by the same RAPD type, but this RAPD type was also detected in two other model cheeses. Hence, the small amounts of serine in model cheeses M5 and M6 could be due to the presence of a RAPD type of L. plantarum, as it was the only unique component of the microflora. Serine normally accumulates during maturation of Danish cheese (Ismail and Hansen, 1972), though decreasing amounts of serine during maturation of model cheese has been associated with the raw milk microflora (Skeie and Ardo¨ , 2000). L. plantarum can deaminate serine to pyruvate and ammonium (Vescovo et al., 1993). The effect of the adjuncts on cheese flavour varied between the strains used, in agreement with Lee et al. (1990). The most positive effect on cheese flavour was achieved in model cheese M1. An adverse effect of the added adjunct was seen in model cheeses M6 and M5 dominated by the same RAPD type. Thus, it appears as if the presence of this RAPD type is uncharacteristic in young mild cheese. Nevertheless, this could be a desired feature in some brands of mature Danbo. In conclusion, the isolates from the studied Danbo cheeses was in general dominated by Lactobacillus and especially by L. paracasei. Using different isolates as adjunct cultures in a cheese model system showed that some L. paracasei strains are beneficial for the cheese flavour. L. plantarum, on the other hand, introduced off-flavours in young model cheese.

Acknowledgements

Mona Østergaard (KVL) is gratefully acknowledged for technical assistance with the cheese ripening analyses. Bengt. Frans Nilsson (Skane Dairies) is acknowledged for valuable discussions regarding the cheese model system. This work was supported by Skane Dairies, Sweden, and The Centre for Advanced Food Studies (LMC), Denmark.Nghe

Đọc ngữ âm

Lactobacillus strains isolated from Danbo cheese as adjunct cultures in a cheese model system

Abstract

Chủng vi khuẩn axit lactic NonStarter (NSLAB) từ sáu chín Danbo pho mát của lứa tuổi khác nhau và của các thương hiệu khác nhau đã được kiểm tra. Đặc biệt nhấn mạnh là trên Lactobacillus chi với mục đích điều tra vai trò của họ trong sự trưởng thành pho mát. Ba mươi ba phân lập được đánh máy bằng phương pháp PCR-based, ngẫu nhiên khuyếch đại DNA đa hình (RAPD). Mười loại RAPD được tìm thấy và 70% phân lập được các RAPD loại tìm thấy trong nhiều hơn một pho mát. Các loại RAPD khác nhau đã được xác định với các loài nhiệt độ bằng cách tạm thời Gradient Gel điện di (TTGE). Hầu hết các phân lập được xác định là Lactobacillus paracasei (76%), nhưng cũng curvatus Lactobacillus, Lactobacillus plantarum, rhamnosus Lactobacillus và một số đơn vị phân loại có nguồn gốc từ văn hóa khởi động được phát hiện. Trong một pho mát, không có lactobacilli đã được tìm thấy. Một biến dạng của các Lactobacillus thường xuyên nhất RAPD loại từ một trong năm pho mát với một hệ thực vật Lactobacillus được sử dụng như là nền văn hóa phụ trợ trong một hệ thống mô hình pho mát. Bốn trong số năm adjuncts được reisolated trong quá trình chín. Hai thuốc hỗ trợ mô hình pho mát có chứa hương vị nhận được điểm số cao hơn so với kiểm soát trong khi hai khác có liên quan với off-hương vị. Hai pho mát mô hình với hương vị-off đã có một vi tương tự và cả hai đã được sau 13 tuần của chín chi phối bởi một chủng xác định là L. plantarum.

1. Introduction

Mesophilic chưa được xác định bắt đầu, với các loài hỗn hợp của Lactococcus lactis subsp và Leuconostoc mesenteroides. cremoris, thường được sử dụng trong sản xuất pho mát Scandinavia. Các nền văn hóa khởi lên tới con số cao trong các pho mát trong ngày đầu tiên và sau đó làm giảm tính khả thi trong suốt quá trình chín, với một tốc độ phụ thuộc vào đặc điểm giống (Vegarud et al, 1983.). Khi các vi khuẩn khởi giảm về số lượng, một thứ thực vật vi sinh vật phát triển tự phát trong pho mát trưởng thành và sau 1-3 tháng nó được thống trị vi (Ardo °, 1993). Những phát triển tự phát NonStarter Lactic Acid Vi khuẩn (NSLAB) có lẽ bắt nguồn từ sữa, nguyên liệu sử dụng để làm pho mát, môi trường chăn nuôi bò sữa (Martley và Crow, 1993). Các NSLAB tìm thấy trong pho mát cứng bán Thụy Điển và Na Uy được sản xuất từ sữa bò tiệt trùng thuộc chi Lactobacillus và đặc biệt là Lactobacillus casei / paracasei (Lindberg và cộng sự, 1996.). Lactobacilli cũng chiếm đa số các NSLAB tìm thấy trong pho mát Danbo Đan Mạch (Kristensen, 1970) và pho mát Cheddar (Peterson và Marshall, 1990). Vai trò của các NSLAB trong pho mát Cheddar đã được xem xét (Peterson và Marshall năm 1990; Fox và cộng sự, 1996.), Và nó là quan trọng trong giữa những giai đoạn cuối của quá trình chín. Điều này đã được chứng minh trong pho mát làm nơi thử nghiệm phương pháp điều trị khác nhau của pho mát sữa đã dẫn đến sự khác biệt về vi trung học và do đó cũng có sự khác biệt về mùi vị (McSweeney và cộng sự, 1993;. Beuvier và cộng sự, 1997;. Skeie và Ardo °, 2000). Với mục tiêu nâng cao chất lượng phó mát hoặc đẩy nhanh quá trình chín pho mát, lactobacilli lựa chọn đã được thêm vào như là nền văn hóa phụ trợ cho sữa pho mát tiệt trùng (Fox và cộng sự, 1996.). Điều này có thể dẫn đến cường độ tăng hương vị của pho mát hoặc để ghi chú hương vị đặc biệt (Lee và cộng sự, 1990;.. Lynch và cộng sự, 1996; Ferna'ndez-Espla và Fox, 1998) mà còn cho chất lượng hương vị giảm (Lee et al , 1990.). Hơn nữa, các loài Lactobacillus khác nhau được kết hợp với pho mát bị lỗi. Ví dụ, họ có thể gây ra quá nhiều lượng khí đốt, các tinh thể calcium lactate và amin hữu cơ. Do đó, một thuốc hỗ trợ thành công cả hai cần phải ngăn chặn các NSLAB, như những có thể có tác động tiêu cực, và có tác động cụ thể để nâng cao chất lượng pho mát. Nhìn chung, NSLAB có thể đóng góp cho hương vị phát triển bởi các hành động của các enzym peptidolytic, mà kết quả trong một số lượng gia tăng của peptide nhỏ hơn và axit amin tự do trong pho mát (Olson, 1990). Số tiền tăng của các axit amin tự do có được tương quan với một cường độ thường tăng hương vị pho-mát (Ardo ° và PETTERSON, 1988). Sự khác biệt trong thành phần của các axit amin tự do có liên quan với các vi sữa tươi trong các thử nghiệm mô hình pho mát (Skeie và Ardo °, 2000). Ảnh hưởng của một số axit amin vào hương vị cũng được biết đến, ví dụ, các hương vị ngọt ngào của proline và hương vị nước dùng của axit glutamic (Mulder, 1952). Tuy nhiên, hương vị cũng có thể được liên quan đến dị hóa acid amin, trong đó nổi tiếng nhất là việc sản xuất các methanethiol từ cysteine và methionine (Weimer và cộng sự, 1999;. Yvon và Rijnen, 2001). Các con đường dị hóa cho tất cả các axit amin không đủ hiểu (Christensen và cộng sự, 1999;. Weimer et al, 1999.). Có lẽ, một số lượng thường tăng của các axit amin hành vi chất hỗ trợ cả hai như là hương vị và là vị tiền thân. Liên quan đến NSLAB, amino acid dị hóa được cho là có vai trò quan trọng trong khả năng của họ để có được năng lượng trong môi trường dinh dưỡng hạn chế, ví dụ, trong chín pho mát (Christensen và cộng sự, 1999.). Danbo là một bán nhiều loại pho mát cứng của Đan Mạch với đôi mắt tròn nhỏ được thực hiện với một mesophilic không xác định DL-starter loài, bao gồm các Lactococcus chi và L. subsp mesenteroides. cremoris. Danbo là chín với bề mặt bẩn và thời gian chín thường chỉ khoảng 6-9 tuần, nhưng cũng có trưởng thành hơn Danbo giống trên thị trường. Các vi sinh của sáu pho mát Danbo đã được kiểm tra, với sự nhấn mạnh đặc biệt về chi Lactobacillus. Mẫu pho mát được sản xuất với các chủng khác nhau duy nhất để làm rõ vai trò của họ như là nền văn hóa bổ sung.

2. Material and methods

2.1. Danbo cheese samples

Đối với sự cô lập của các chủng vi khuẩn, sáu pho mát Danbo của nhãn hiệu khác nhau, được tuyên bố là thanh niên hoặc trưởng thành, được mua trong các cửa hàng thực phẩm. Họ được đánh giá organoleptically bốn học sinh lớp chuyên gia điển hình như pho mát Danbo, với một số đặc điểm khác nhau cho từng thương hiệu trong các biến thể cho Danbo (Bảng 1).

Nghe

Đọc ngữ âm

2.2. Microbiological sampling of Danbo cheeses

Samples for microbiological analyses were aseptically taken from the centre of the cheese. An aliquot of 10 g of the samples was transferred to a sterile stomacher bag and mixed with 90 ml 20 g/l sodium citrate solution in a Stomacher (Seaward Medical, London SE1 1PP, UK) for 2.5 min. After dilution in petone/saline solution, viable counts were analysed on: Brain Heart Infusion agar (BHI; DIFCO, Meylan cedex, France) incubated for 4 days at 28 jC (mesophilic aerobic and anaerobic count), Rogosa agar supplemented with 1.36 ml/l acetic acid (OXOID, Basingstoke, Hampshire, England) incubated anaerobically for 4 days at 28 jC. Anaerobic incubations were done in anaerobic jars (BBL GasPak Anaerobic system, Becton Dickinson Microbiology Systems, Cockeysville, MD, USA).

2.3. Isolation of microorganisms from cheese

Six isolates were picked from the viable count plates of each Danbo cheese, three from Rogosa agar, two from BHI agar, incubated anaerobically, and one from BHI agar, incubated aerobically. All isolates were randomly picked from plates containing more than 30 colonies.

2.4. Typing of isolates

 All isolates were characterised by Gram reaction by the KOH method (Gregersen, 1978), catalase reaction (5% H2O2), cell morphology and motility determined by phase contrast microscopy. The method of Randomly Amplified Polymorphic DNA (RAPD), performed according to Quednau et al. (1998), was used to type isolates. Crude cell extracts were prepared from overnight cultures at 28 jC in 1 ml BHI for isolates from the BHI agar plates and in 1 ml LCM for isolates from the Rogosa agar plates. The cells of the pure culture were washed twice in 1 ml sterile Milli-QR water (Millipore, Molsheim, France), and disrupted in an Eppendorf tube with glass beads (2 mm in diameter) using an Eppendorf Mixer (Mod. 5432; Eppendorf, Hamburg, Germany). The primer sequence was 5V-ACGCGCCCT-3V and it was used at a concentration of 15 AM in the reaction mixture. The RAPD procedure resulted in a suitable number of distinct bands on the gels for the presently typed lactobacilli, as previously has been shown for Lactobacillus plantarum (Johansson et al., 1995). The band patterns of the gels were analysed with Pearson product moment correlation coefficient (r) and the Unweighted Pair Group Method with Arithmetic averages (UPGMA; Romesburg, 1984) by using Gel Compark 4.0 (Applied Maths, Kortrijk, Belgium). The computerised cluster analysis of the RAPD patterns was controlled by a visual comparison of the original photos of RAPD patterns of isolates within one cluster. Isolates of each Lactobacillus RAPD type were identified to the species level by Temporal Temperature Gradient gel Electrophoresis (TTGE) by comparing the TTGE profiles of isolates with that of amplicons from type strains, according to Va´sques et al. (2001).

2.5. Cheese model system

Strains of the genus Lactobacillus, isolated from the sampled Danbo cheeses, were used as adjunct cultures in a cheese model system. One strain representing the most frequent RAPD type of lactobacilli of each of the sampled Danbo cheeses (five strains) was used. Model cheeses were made of cheese grains from the production of Herrga°rd cheese. Herrga°rd is produced with a mesophilic DL-starter including undefined strains of the genera Lactococcus and Leuconostoc (Ardo¨ , 1993). The cheese grains were carefully separated from the whey after ‘‘cooking’’ at 39 jC during routine production at a cheese making plant. One batch yielded 10 model cheeses containing the same adjunct, inoculated with 105 colony forming units (cfu) of adjunct culture per gram of cheese grains. The adjuncts had been grown in Lactobacillus  carrying medium (LCM; Efthymiou and Hansen, 1962) and stored in glycerol buffer at _80 jC. Before use they were diluted to about 1 ml in physiological saline solution. To obtain cheese grains in the same physical stage for the different batches, these were collected from different vats of cheese manufacture at exactly the same time in production. To estimate the variation in microbial flora of the cheese grains from different vats, bacteria from different cheese grains used for different batches of model cheeses were isolated from Rogosa agar supplemented with 1.36 ml acetic acid and typed by RAPD. Dry salting and inoculation of the cheese grains were performed within a bench-hood supplied with sterile  filtered nitrogen gas. About 2 kg of cheese grains was gently mixed with salt and the adjunct culture. Approximately 150 g of inoculated and salted cheese grains were transferred to plastic jars in which they were pressed and stored. The salted and inoculated cheese grains were transferred to a 300 ml sterile plastic jar in which they were pressed at 40 jC according to the following scheme: 0–10 min at 160 kg/m2, 10–20 min at 450 kg/m2 and 20–80 min at 740 kg/m2. Pressing was performed with a plastic piston placed in the jar with weights added on top. After pouring off the whey, the model cheeses in the bottom of the jars were kept for 60 min at 37 jC, 1 day at 22 jC, 2–14 days at 18 jC and from 2 weeks at 10–12 jC. Model cheeses were covered with wax after 1 week. They were analysed with regard to pH after 24 h using pH meter (PHM 62, Radiometer, Copenhagen, Denmark), moisture (AOAC method 962.08) and salt content (AOAC method 15.160). The model cheeses were sampled in duplicate (two replicates) for microbiological and cheese ripening analysis after 2 days, 6.5 weeks and 13 weeks, and for sensory properties after 13 weeks of ripening. Analysis of moisture and salt content was done after 17 weeks ripening on two replicates.

2.6. Microbiological sampling and analysis of model cheeses

After sampling and dilution in physiological saline/ peptone solution, mesophilic viable counts (aerobic and anaerobic) and Lactobacillus spp. were analysed as described in Section 2.2. Lactococcus spp. was monitored as cocci on M17 Agar (MERCK, Darmstadt, Germany) incubated aerobically for 2 days at 22 jC. Yeasts were monitored on Yeast extract Glucose Chloramphenicol agar (YGC; MERCK) incubated aerobically for 4 days at 25 jC and moulds were monitored on Potato Dextrose Agar (PDA; DIFCO, Detroit, MI, USA) supplemented with tartaric acid incubated for 4 days at 22 jC. Colonies were studied for morphology by phase contrast microscopy. Samples from 2-day-old model cheeses were analysed on Calcium Citrate Agar (KCA; Kemikalia, Lund, Sweden) and X-gal (KEBOlab, Lund, Sweden) for discriminating between the viable counts of starter bacteria able to use citrate and those that were citratenegative. The agar was used as previously described by Vogensen et al. (1987) and the count of citratepositive colonies were recorded as colonies with a clear zone.

2.7. Isolation and typing of microorganisms from model cheeses

The different cheese grains used for the separate batches of model cheeses were analysed for their content of lactobacilli. Further, RAPD typing of isolates (performed as described in Section 2.4) was done to control the presence of the adjunct in the model cheese microflora. Three colonies were randomly picked from the Rogosa plate of each batch for RAPD typing. From samples taken after 6.5 weeks of ripening, isolates were randomly picked from the anaerobically incubated Rogosa and BHI plates, with more than 30 colonies. Two randomly selected colonies were picked from each BHI plate and from Rogosa plates with colonies of homogeneous appearance. Three colonies were randomly picked from Rogosa plates with colonies of heterogeneous appearance. Additionally after 13 weeks, two randomly selected colonies were also picked from M17 agar.

2.8. Reisolation criteria

The RAPD patterns of the isolates from model cheeses made with the same adjunct were compared with the RAPD pattern of isolates from the control and the corresponding adjunct. The RAPD patterns of isolates from the cheese grains used for the current cheese making batch were also included in the comparison. The reisolation was considered positive if the adjunct clustered together with isolates from the corresponding model cheese (identical RAPD types) and separate from isolates from the control model cheeses.

2.9. Cheese ripening analysis

Samples for cheese ripening analysis were taken at three occasions, after 2 days, 6.5 weeks and 13 weeks. Two of the model cheeses from each of the six different batches were analysed at each age. Casein components were analysed in a citrate dispersion of cheese using capillary electrophoresis (CE; Ardo¨ and Polychroniadou, 1999). Peptides of the pH 4.6 soluble fraction of cheese were analysed with reversed phase HPLC (RP-HPLC; Ardo¨ and Gripon, 1995). Samples were filtered (0.42 Am) before injection of 50 Al onto the column (Nucleosil 5 Am C18, 250 _4.6 mm; Microlab, A ° rhus, Denmark). Free amino acids (FAA) were determined by RP-HPLC using derivatisation with o-phtaldialdehyde (OPA) for the primary amino groups and, in the same sample, fluorenylmethyl chloroformate (FMOC) for the secondary amino group of proline (Bu¨tikofer and Ardo¨ , 1999). The column used was Hypersil ODS 250_4 mm (Aglient Technologies, Birkerød, Denmark). Peptides and amino acids were analysed with equipment by Waters, Alliance and Millenium software (Waters, Hedehusene, Denmark).

2.10. Sensory analyses

Top of Form

Các mô hình đã được xếp loại pho mát có sự tham khảo bán pho mát cứng Thụy Điển và không có quy định tiêu chuẩn cảm quan. Như vậy, so sánh cảm quan bị hạn chế ở pho mát mô hình điều khiển (không có phụ trợ). Các bảng điều khiển đã được đào tạo và kinh nghiệm trong việc đánh giá các pho mát cứng bán Thụy Điển. Để đạt được chấm điểm thống nhất về các mô tả nói chung được sử dụng, các cuộc thảo luận được tổ chức tại một khoảng cách của hai pho mát mô hình, với các giao thức không thay đổi gì. Nếu những nhận xét tương tự đã được thực hiện về cùng một mô hình pho mát bởi nhiều hơn một học sinh lớp, điều này đã được ghi nhận trong giao thức tổng thể. Các pho mát thử nghiệm mô hình bị mù và được dán nhãn với một số ba chữ số ngẫu nhiên được chọn. Mẫu pho mát được nóng đến 17 JC trước khi phân loại. Thủ tục phân tích cảm quan nhằm đánh giá sự trưởng thành của các hương vị của pho mát mô hình với các nền văn hóa phụ trợ, so với kiểm soát (không có thuốc hỗ trợ) và phát hiện ngoài hương vị và khiếm khuyết gây ra hoặc bị cấm bởi thuốc hỗ trợ này. Mẫu pho mát đã được xếp loại sau 13 tuần của năm học sinh lớp trên bản mẫu của mô hình với adjuncts pho mát khác nhau và kiểm soát (không có phụ trợ). Tám thuộc tính khác nhau đã được sử dụng: mùi, kết cấu, chất lượng, hương vị, khác biệt, hương vị trưởng thành, sự tươi mát, cường độ của off-hương vị và chất lượng tổng thể, trên phạm vi hưởng thụ (0-10).

2.11. Data analysis

Analyses of significant differences of amino acids in model cheese were made by calculating confidence intervals using the t-distribution. Principal Component Analysis (PCA) was performed using Unscrambler 7.5 (camo ASA, Oslo, Norway). The data set of free amino acids was weighted by dividing each response by its standard deviation. The score plot was tested by hotelling T2 ellips. Full cross validation was used for validating the data set.

3. Results

3.1. Viable counts in Danbo and RAPD typing of isolates

The bacterial viable counts on BHI agar (incubated aerobic and anaerobic) were 6.7–6.8 log cfu/g in the younger cheeses, with exception of cheese D4, in which it was 7.4 log cfu/g. The viable count of lactobacilli was around 6.6 in cheeses D1 and D2 and 7.0 log cfu/g in cheese D4 while no lactobacilli were found in cheese D3. The two mature cheeses (D5 and D6) had aerobic viable counts of 5.8 log cfu/g and anaerobic viable counts of 6.4 log cfu/g. The viable counts of lactobacilli in these cheeses were 5.8 log cfu/g. In five out of the six cheeses, the microflora was dominated by Lactobacillus strains, while only gram positive, catalase negative, non motile cocci (starter bacteria) were found in cheese D3. The 33 isolates from the six Danbo cheeses could be grouped into 10 different RAPD types (Fig. 1). The RAPD patterns are shown in Fig. 2. Starter bacteria represented one of these types while all the others were Lactobacillus spp. Of the nine Lactobacillus RAPD types, three consisted of a single strain, three were clusters with isolates from only one cheese and three were clusters with isolates from three different cheeses (Table 2). About 2/3 of the isolates were of RAPD types found in more than one cheese. Especially, all isolates from cheese D4 were of the same RAPD type (Table 2). Seven RAPD types were identified by TTGE as Lactobacillus paracasei (25 isolates) and two of the One membered clusters as Lactobacillus curvatus and Lactobacillus rhamnosus, respectively (Fig. 1). One RAPD type could be identified as L. plantarum by its typical RAPD pattern (two isolates; Table 2). Among isolates from the five Danbo cheeses in which lactobacilli were detected, five different isolates were selected for use as adjunct cultures in a cheese model system. The selected strains represented the most frequent RAPD types of NSLAB isolated from the sampled Danbo cheeses (Table 2).

3.2. Model cheeses manufactured with different adjuncts

The compositional analyses of model cheeses after 17 weeks of ripening showed a mean moisture content of 42.1% (w/w; range 40.4–44.4) and a mean salt inmoisture ratio of 3.59 (range 3.38–3.77). pH was in the interval 5.3–5.4, in all model cheeses (results not shown).

3.3. Viable counts and reisolation

In 2-day-old model cheeses, the viable count of starter bacteria was 8.0–8.5 log cfu/g and the ratio between starter bacteria utilising lactose or lactose and citrate was 1:1. The average viable count of Lactobacillus was 6.5 log cfu/g in model cheeses with an adjunct and 6.0 log cfu/g in the control (without adjunct). During ripening there were indications of that the viable counts were higher in inoculated model cheeses, especially the viable counts of Lactobacillus, with exception of model cheese M2 (Table 3). The microflora of model cheese M1 was dominated by the adjunct after 6.5 and 13 weeks of ripening. In model cheeses M2 and M4, the different adjuncts were reisolated from selective agar after 6.5 weeks and they dominated the microflora after 13 weeks. The adjunct added to model cheese M6 was only reisolated after 13 weeks, at which time it dominated the microflora. The added adjunct was not reisolated from model cheese M5 that after 13 weeks were dominated by a L. plantarum strain. The microflora of model cheeses M5 and M6 developed similarly and was after 6.5 weeks dominated by the same RAPD type. This RAPD type was also detected in model cheeses M2 and M4.

3.4. Proteolysis

No differences were found in the results of the CE of casein components and RP-HPLC of pH 4.6 soluble peptides between model cheeses with different adjuncts and the control (without adjunct). PCA of the CE results grouped the model cheeses in three distinct groups, one for each cheese age analysed (results not shown). However, PCA of the amino acid composition showed differences between model cheeses with different adjuncts that increased during ripening (Fig. 3). PC1 explained 85% of the variation and PC2 explained 7% of the variation, i.e. correlation to duration of ripening and adjunct culture, respectively. Especially, the amounts of serine were undetectable or much lower in model cheeses M5 and M6 than in the others (Table 4).

3.5. Sensory analysis

Những xu hướng nhìn thấy trong các phân tích cảm quan được mô hình pho mát M1 và M2 nhận được điểm số cao hơn về chất lượng hương vị hơn so với sự kiểm soát sau 13 tuần của quá trình chín. Hơn nữa, ngoài hương vị đã được hầu hết các phát âm trong mô hình pho mát M5 và M6 (Bảng 5), được mô tả như là đắng cay hay do học sinh lớp.

Nghe

Đọc ngữ âm

4. Discussion

L. paracasei là vi khuẩn thường xuyên bị cô lập từ pho mát Danbo phân tích, trong đó đồng ý với nghiên cứu trước đây của pho mát Thụy Điển và Na Uy và pho mát Cheddar (Lindberg và cộng sự, 1996.) (Williams và Ngân hàng, năm 1997;. Fitzsimons et al, 1999) , mặc dù L. plantarum đã được báo cáo là các NSLAB chính trong một số loại pho mát Cheddar (Peterson và Marshall, 1990). L. curvatus đã được tìm thấy tại tần số thấp hơn trong cả hai Cheddar (Fitzsimons et al., 1999) và pho mát starter nghệ nhân miễn phí (Lo'pez và Mayo, 1997). Mặc dù có một sự xuất hiện chung của L. paracasei giữa các NSLAB tổ chức chung cho một số loại pho mát, nó xuất hiện như thể các loại RAPD của NSLAB khác nhau giữa các loại pho mát làm tại công ty sữa khác nhau (Fitzsimons và cộng sự, 1999;. Antonsson et al, 2001. ), tuy nhiên, trong nghiên cứu này, 21 trong số 30 phân lập các chủng NSLAB được các loại RAPD tìm thấy trong pho mát từ nhiều sữa. Pho mát mà không NSLAB, như trong pho mát D3, hiếm khi được báo cáo trong pho mát được sản xuất ở quy mô toàn từ sữa tiệt trùng. Một lời giải thích có thể ong thủ tục sản xuất rất tốt. Một lời giải thích có thể hoạt động kháng khuẩn của nền văn hóa khởi được sử dụng. Phát hiện này củng cố vai trò của các NSLAB trong pho mát làm chín như là chịu trách nhiệm cho các ghi chú hương vị và tăng cường hương vị pho mát hơn là cần thiết cho sự phát triển mùi vị pho mát mà trước đây đã chứng minh cho Cheddar (al Reiter và các cộng sự, 1967.) và Gouda (Kleter, 1976 ). Một phần lớn (bốn trong số năm) của các phân lập được sử dụng như là nền văn hóa phụ trợ đã được reisolated từ pho mát mô hình tương ứng. Các L. plantarum chủng được sử dụng chỉ reisolated nhân dịp lấy mẫu mới nhất, trong đó thú vị đã đồng ý với điều đó nó được phân lập từ pho mát Danbo trưởng thành nhất. Trong mô hình pho mát M5 và M6, serine là chỉ phát hiện sau 13 tuần của quá trình chín, và sau đó với số lượng nhỏ so với mô hình pho mát M1, M2 và M3. Các vi của mô hình pho mát M5 và M6 là tương tự và sau 13 tuần, cả hai đã được chi phối bởi các loại cùng RAPD (L. plantarum). Hơn nữa, cũng sau 6,5 tuần, các mô hình pho mát đã được chi phối bởi các loại RAPD giống nhau, nhưng loại hình này cũng được phát hiện RAPD trong hai pho mát mô hình khác. Do đó, một lượng nhỏ serine trong mô hình pho mát M5 và M6 có thể là do sự hiện diện của một loại RAPD của L. plantarum, vì nó là chỉ duy nhất thành phần của vi sinh. Serine thường tích tụ trong quá trình trưởng thành của pho mát Đan Mạch (Ismail và Hansen, 1972), mặc dù giảm lượng serine trong mô hình trưởng thành của pho mát đã được liên kết với các vi sữa tươi (Skeie và Ardo °, 2000). L. plantarum có thể deaminate serine để pyruvate và amoni (Vescovo et al, 1993.). Hiệu quả của các adjuncts về hương vị pho-mát khác nhau giữa các chủng được sử dụng, trong hợp đồng với Lee et al. (1990). Các tác động tích cực nhất trên hương vị pho-mát đã đạt được trong mô hình M1 pho mát. Một tác dụng phụ của thuốc hỗ trợ thêm đã được nhìn thấy trong mô hình pho mát M6 và M5 chi phối bởi các loại cùng RAPD. Vì vậy, nó có vẻ như sự hiện diện của loại này là không điển RAPD trong pho mát nhẹ trẻ. Tuy nhiên, điều này có thể là một tính năng mong muốn trong một số thương hiệu của trưởng thành Danbo. Trong kết luận, các phân lập từ các nghiên cứu pho mát Danbo là nói chung chiếm ưu thế và đặc biệt là Lactobacillus paracasei L.. Sử dụng phân lập là nền văn hóa khác nhau phụ trợ trong một hệ thống mô hình pho mát cho thấy rằng một số L. chủng paracasei có lợi cho các hương vị pho mát. L. plantarum, mặt khác, giới thiệu off-hương vị trong pho mát mẫu trẻ.

Acknowledgements

Mona Østergaard (KVL) is gratefully acknowledged for technical assistance with the cheese ripening analyses. Bengt. Frans Nilsson (Skane Dairies) is acknowledged for valuable discussions regarding the cheese model system. This work was supported by Skane Dairies, Sweden, and The Centre for Advanced Food Studies (LMC), Denmark.Nghe

Đọc ngữ âm

Bạn đang đọc truyện trên: Truyen247.Pro

Tags: