Chào các bạn! Vì nhiều lý do từ nay Truyen2U chính thức đổi tên là Truyen247.Pro. Mong các bạn tiếp tục ủng hộ truy cập tên miền mới này nhé! Mãi yêu... ♥

Complete 8086 instruction set linhcan87

Complete 8086 instruction set

--------------------------------------------------------------------------------

Quick reference:

AAA

AAD

AAM

AAS

ADC

ADD

AND

CALL

CBW

CLC

CLD

CLI

CMC

CMP

CMPSB

CMPSW

CWD

DAA

DAS

DEC

DIV

HLT

IDIV

IMUL

IN

INC

INT

INTO

IRET

JA

JAE

JB

JBE

JC

JCXZ

JE

JG

JGE

JL

JLE

JMP

JNA

JNAE

JNB

JNBE

JNC

JNE

JNG

JNGE

JNL

JNLE

JNO

JNP

JNS

JNZ

JO

JP

JPE

JPO

JS

JZ

LAHF

LDS

LEA

LES

LODSB

LODSW

LOOP

LOOPE

LOOPNE

LOOPNZ

LOOPZ

MOV

MOVSB

MOVSW

MUL

NEG

NOP

NOT

OR

OUT

POP

POPA

POPF

PUSH

PUSHA

PUSHF

RCL

RCR

REP

REPE

REPNE

REPNZ

REPZ

RET

RETF

ROL

ROR

SAHF

SAL

SAR

SBB

SCASB

SCASW

SHL

SHR

STC

STD

STI

STOSB

STOSW

SUB

TEST

XCHG

XLATB

XOR

--------------------------------------------------------------------------------

Operand types:

REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP, SP.

SREG: DS, ES, SS, and only as second operand: CS.

memory: [BX], [BX+SI+7], variable, etc...(see Memory Access).

immediate: 5, -24, 3Fh, 10001101b, etc...

--------------------------------------------------------------------------------

Notes:

When two operands are required for an instruction they are separated by comma. For example:

REG, memory

When there are two operands, both operands must have the same size (except shift and rotate instructions). For example:

AL, DL

DX, AX

m1 DB ?

AL, m1

m2 DW ?

AX, m2

Some instructions allow several operand combinations. For example:

memory, immediate

REG, immediate

memory, REG

REG, SREG

Some examples contain macros, so it is advisable to use Shift + F8 hot key to Step Over (to make macro code execute at maximum speed set step delay to zero), otherwise emulator will step through each instruction of a macro. Here is an example that uses PRINTN macro:

include 'emu8086.inc'

ORG 100h

MOV AL, 1

MOV BL, 2

PRINTN 'Hello World!' ; macro.

MOV CL, 3

PRINTN 'Welcome!' ; macro.

RET

--------------------------------------------------------------------------------

These marks are used to show the state of the flags:

1 - instruction sets this flag to 1.

0 - instruction sets this flag to 0.

r - flag value depends on result of the instruction.

? - flag value is undefined (maybe 1 or 0).

--------------------------------------------------------------------------------

Some instructions generate exactly the same machine code, so disassembler may have a problem decoding to your original code. This is especially important for Conditional Jump instructions (see "Program Flow Control" in Tutorials for more information).

--------------------------------------------------------------------------------

Instructions in alphabetical order:

Instruction Operands Description

AAA No operands ASCII Adjust after Addition.

Corrects result in AH and AL after addition when working with BCD values.

It works according to the following Algorithm:

if low nibble of AL > 9 or AF = 1 then:

AL = AL + 6

AH = AH + 1

AF = 1

CF = 1

else

AF = 0

CF = 0

in both cases:

clear the high nibble of AL.

Example:

MOV AX, 15 ; AH = 00, AL = 0Fh

AAA ; AH = 01, AL = 05

RET

C Z S O P A

r ? ? ? ? r

AAD No operands ASCII Adjust before Division.

Prepares two BCD values for division.

Algorithm:

AL = (AH * 10) + AL

AH = 0

Example:

MOV AX, 0105h ; AH = 01, AL = 05

AAD ; AH = 00, AL = 0Fh (15)

RET

C Z S O P A

? r r ? r ?

AAM No operands ASCII Adjust after Multiplication.

Corrects the result of multiplication of two BCD values.

Algorithm:

AH = AL / 10

AL = remainder

Example:

MOV AL, 15 ; AL = 0Fh

AAM ; AH = 01, AL = 05

RET

C Z S O P A

? r r ? r ?

AAS No operands ASCII Adjust after Subtraction.

Corrects result in AH and AL after subtraction when working with BCD values.

Algorithm:

if low nibble of AL > 9 or AF = 1 then:

AL = AL - 6

AH = AH - 1

AF = 1

CF = 1

else

AF = 0

CF = 0

in both cases:

clear the high nibble of AL.

Example:

MOV AX, 02FFh ; AH = 02, AL = 0FFh

AAS ; AH = 01, AL = 09

RET

C Z S O P A

r ? ? ? ? r

ADC REG, memory

memory, REG

REG, REG

memory, immediate

REG, immediate Add with Carry.

Algorithm:

operand1 = operand1 + operand2 + CF

Example:

STC ; set CF = 1

MOV AL, 5 ; AL = 5

ADC AL, 1 ; AL = 7

RET

C Z S O P A

ADD REG, memory

memory, REG

REG, REG

memory, immediate

REG, immediate Add.

Algorithm:

operand1 = operand1 + operand2

Example:

MOV AL, 5 ; AL = 5

ADD AL, -3 ; AL = 2

RET

C Z S O P A

AND REG, memory

memory, REG

REG, REG

memory, immediate

REG, immediate Logical AND between all bits of two operands. Result is stored in operand1.

These rules apply:

1 AND 1 = 1

1 AND 0 = 0

0 AND 1 = 0

0 AND 0 = 0

Example:

MOV AL, 'a' ; AL = 01100001b

AND AL, 11011111b ; AL = 01000001b ('A')

RET

C Z S O P

0 r r 0 r

CALL procedure name

label

4-byte address

Transfers control to procedure, return address is (IP) is pushed to stack. 4-byte address may be entered in this form: 1234h:5678h, first value is a segment second value is an offset (this is a far call, so CS is also pushed to stack).

Example:

ORG 100h ; for COM file.

CALL p1

ADD AX, 1

RET ; return to OS.

p1 PROC ; procedure declaration.

MOV AX, 1234h

RET ; return to caller.

p1 ENDP

C Z S O P A

unchanged

CBW No operands Convert byte into word.

Algorithm:

if high bit of AL = 1 then:

AH = 255 (0FFh)

else

AH = 0

Example:

MOV AX, 0 ; AH = 0, AL = 0

MOV AL, -5 ; AX = 000FBh (251)

CBW ; AX = 0FFFBh (-5)

RET

C Z S O P A

unchanged

CLC No operands Clear Carry flag.

Algorithm:

CF = 0

C

0

CLD No operands Clear Direction flag. SI and DI will be incremented by chain instructions: CMPSB, CMPSW, LODSB, LODSW, MOVSB, MOVSW, STOSB, STOSW.

Algorithm:

DF = 0

D

0

CLI No operands Clear Interrupt enable flag. This disables hardware interrupts.

Algorithm:

IF = 0

I

0

CMC No operands Complement Carry flag. Inverts value of CF.

Algorithm:

if CF = 1 then CF = 0

if CF = 0 then CF = 1

C

CMP REG, memory

memory, REG

REG, REG

memory, immediate

REG, immediate Compare.

Algorithm:

operand1 - operand2

result is not stored anywhere, flags are set (OF, SF, ZF, AF, PF, CF) according to result.

Example:

MOV AL, 5

MOV BL, 5

CMP AL, BL ; AL = 5, ZF = 1 (so equal!)

RET

C Z S O P A

CMPSB No operands Compare bytes: ES:[DI] from DS:[SI].

Algorithm:

DS:[SI] - ES:[DI]

set flags according to result:

OF, SF, ZF, AF, PF, CF

if DF = 0 then

SI = SI + 1

DI = DI + 1

else

SI = SI - 1

DI = DI - 1

Example:

open cmpsb.asm from c:\emu8086\examples

C Z S O P A

CMPSW No operands Compare words: ES:[DI] from DS:[SI].

Algorithm:

DS:[SI] - ES:[DI]

set flags according to result:

OF, SF, ZF, AF, PF, CF

if DF = 0 then

SI = SI + 2

DI = DI + 2

else

SI = SI - 2

DI = DI - 2

example:

open cmpsw.asm from c:\emu8086\examples

C Z S O P A

CWD No operands Convert Word to Double word.

Algorithm:

if high bit of AX = 1 then:

DX = 65535 (0FFFFh)

else

DX = 0

Example:

MOV DX, 0 ; DX = 0

MOV AX, 0 ; AX = 0

MOV AX, -5 ; DX AX = 00000h:0FFFBh

CWD ; DX AX = 0FFFFh:0FFFBh

RET

C Z S O P A

unchanged

DAA No operands Decimal adjust After Addition.

Corrects the result of addition of two packed BCD values.

Algorithm:

if low nibble of AL > 9 or AF = 1 then:

AL = AL + 6

AF = 1

if AL > 9Fh or CF = 1 then:

AL = AL + 60h

CF = 1

Example:

MOV AL, 0Fh ; AL = 0Fh (15)

DAA ; AL = 15h

RET

C Z S O P A

DAS No operands Decimal adjust After Subtraction.

Corrects the result of subtraction of two packed BCD values.

Algorithm:

if low nibble of AL > 9 or AF = 1 then:

AL = AL - 6

AF = 1

if AL > 9Fh or CF = 1 then:

AL = AL - 60h

CF = 1

Example:

MOV AL, 0FFh ; AL = 0FFh (-1)

DAS ; AL = 99h, CF = 1

RET

C Z S O P A

DEC REG

memory

Decrement.

Algorithm:

operand = operand - 1

Example:

MOV AL, 255 ; AL = 0FFh (255 or -1)

DEC AL ; AL = 0FEh (254 or -2)

RET

Z S O P A

CF - unchanged!

DIV REG

memory

Unsigned divide.

Algorithm:

when operand is a byte:

AL = AX / operand

AH = remainder (modulus)

when operand is a word:

AX = (DX AX) / operand

DX = remainder (modulus)

Example:

MOV AX, 203 ; AX = 00CBh

MOV BL, 4

DIV BL ; AL = 50 (32h), AH = 3

RET

C Z S O P A

? ? ? ? ? ?

HLT No operands Halt the System.

Example:

MOV AX, 5

HLT

C Z S O P A

unchanged

IDIV REG

memory

Signed divide.

Algorithm:

when operand is a byte:

AL = AX / operand

AH = remainder (modulus)

when operand is a word:

AX = (DX AX) / operand

DX = remainder (modulus)

Example:

MOV AX, -203 ; AX = 0FF35h

MOV BL, 4

IDIV BL ; AL = -50 (0CEh), AH = -3 (0FDh)

RET

C Z S O P A

? ? ? ? ? ?

IMUL REG

memory

Signed multiply.

Algorithm:

when operand is a byte:

AX = AL * operand.

when operand is a word:

(DX AX) = AX * operand.

Example:

MOV AL, -2

MOV BL, -4

IMUL BL ; AX = 8

RET

C Z S O P A

r ? ? r ? ?

CF=OF=0 when result fits into operand of IMUL.

IN AL, im.byte

AL, DX

AX, im.byte

AX, DX Input from port into AL or AX.

Second operand is a port number. If required to access port number over 255 - DX register should be used.

Example:

IN AX, 4 ; get status of traffic lights.

IN AL, 7 ; get status of stepper-motor.

C Z S O P A

unchanged

INC REG

memory

Increment.

Algorithm:

operand = operand + 1

Example:

MOV AL, 4

INC AL ; AL = 5

RET

Z S O P A

CF - unchanged!

INT immediate byte Interrupt numbered by immediate byte (0..255).

Algorithm:

Push to stack:

flags register

CS

IP

IF = 0

Transfer control to interrupt procedure

Example:

MOV AH, 0Eh ; teletype.

MOV AL, 'A'

INT 10h ; BIOS interrupt.

RET

C Z S O P A I

unchanged 0

INTO No operands Interrupt 4 if Overflow flag is 1.

Algorithm:

if OF = 1 then INT 4

Example:

; -5 - 127 = -132 (not in -128..127)

; the result of SUB is wrong (124),

; so OF = 1 is set:

MOV AL, -5

SUB AL, 127 ; AL = 7Ch (124)

INTO ; process error.

RET

IRET No operands Interrupt Return.

Algorithm:

Pop from stack:

IP

CS

flags register

C Z S O P A

popped

JA label Short Jump if first operand is Above second operand (as set by CMP instruction). Unsigned.

Algorithm:

if (CF = 0) and (ZF = 0) then jump

Example:

include 'emu8086.inc'

ORG 100h

MOV AL, 250

CMP AL, 5

JA label1

PRINT 'AL is not above 5'

JMP exit

label1:

PRINT 'AL is above 5'

exit:

RET

C Z S O P A

unchanged

JAE label Short Jump if first operand is Above or Equal to second operand (as set by CMP instruction). Unsigned.

Algorithm:

if CF = 0 then jump

Example:

include 'emu8086.inc'

ORG 100h

MOV AL, 5

CMP AL, 5

JAE label1

PRINT 'AL is not above or equal to 5'

JMP exit

label1:

PRINT 'AL is above or equal to 5'

exit:

RET

C Z S O P A

unchanged

JB label Short Jump if first operand is Below second operand (as set by CMP instruction). Unsigned.

Algorithm:

if CF = 1 then jump

Example:

include 'emu8086.inc'

ORG 100h

MOV AL, 1

CMP AL, 5

JB label1

PRINT 'AL is not below 5'

JMP exit

label1:

PRINT 'AL is below 5'

exit:

RET

C Z S O P A

unchanged

JBE label Short Jump if first operand is Below or Equal to second operand (as set by CMP instruction). Unsigned.

Algorithm:

if CF = 1 or ZF = 1 then jump

Example:

include 'emu8086.inc'

ORG 100h

MOV AL, 5

CMP AL, 5

JBE label1

PRINT 'AL is not below or equal to 5'

JMP exit

label1:

PRINT 'AL is below or equal to 5'

exit:

RET

C Z S O P A

unchanged

JC label Short Jump if Carry flag is set to 1.

Algorithm:

if CF = 1 then jump

Example:

include 'emu8086.inc'

ORG 100h

MOV AL, 255

ADD AL, 1

JC label1

PRINT 'no carry.'

JMP exit

label1:

PRINT 'has carry.'

exit:

RET

C Z S O P A

unchanged

JCXZ label Short Jump if CX register is 0.

Algorithm:

if CX = 0 then jump

Example:

include 'emu8086.inc'

ORG 100h

MOV CX, 0

JCXZ label1

PRINT 'CX is not zero.'

JMP exit

label1:

PRINT 'CX is zero.'

exit:

RET

C Z S O P A

unchanged

JE label Short Jump if first operand is Equal to second operand (as set by CMP instruction). Signed/Unsigned.

Algorithm:

if ZF = 1 then jump

Example:

include 'emu8086.inc'

ORG 100h

MOV AL, 5

CMP AL, 5

JE label1

PRINT 'AL is not equal to 5.'

JMP exit

label1:

PRINT 'AL is equal to 5.'

exit:

RET

C Z S O P A

unchanged

JG label Short Jump if first operand is Greater then second operand (as set by CMP instruction). Signed.

Algorithm:

if (ZF = 0) and (SF = OF) then jump

Example:

include 'emu8086.inc'

ORG 100h

MOV AL, 5

CMP AL, -5

JG label1

PRINT 'AL is not greater -5.'

JMP exit

label1:

PRINT 'AL is greater -5.'

exit:

RET

C Z S O P A

unchanged

JGE label Short Jump if first operand is Greater or Equal to second operand (as set by CMP instruction). Signed.

Algorithm:

if SF = OF then jump

Example:

include 'emu8086.inc'

ORG 100h

MOV AL, 2

CMP AL, -5

JGE label1

PRINT 'AL < -5'

JMP exit

label1:

PRINT 'AL >= -5'

exit:

RET

C Z S O P A

unchanged

JL label Short Jump if first operand is Less then second operand (as set by CMP instruction). Signed.

Algorithm:

if SF <> OF then jump

Example:

include 'emu8086.inc'

ORG 100h

MOV AL, -2

CMP AL, 5

JL label1

PRINT 'AL >= 5.'

JMP exit

label1:

PRINT 'AL < 5.'

exit:

RET

C Z S O P A

unchanged

JLE label Short Jump if first operand is Less or Equal to second operand (as set by CMP instruction). Signed.

Algorithm:

if SF <> OF or ZF = 1 then jump

Example:

include 'emu8086.inc'

ORG 100h

MOV AL, -2

CMP AL, 5

JLE label1

PRINT 'AL > 5.'

JMP exit

label1:

PRINT 'AL <= 5.'

exit:

RET

C Z S O P A

unchanged

JMP label

4-byte address

Unconditional Jump. Transfers control to another part of the program. 4-byte address may be entered in this form: 1234h:5678h, first value is a segment second value is an offset.

Algorithm:

always jump

Example:

include 'emu8086.inc'

ORG 100h

MOV AL, 5

JMP label1 ; jump over 2 lines!

PRINT 'Not Jumped!'

MOV AL, 0

label1:

PRINT 'Got Here!'

RET

C Z S O P A

unchanged

JNA label Short Jump if first operand is Not Above second operand (as set by CMP instruction). Unsigned.

Algorithm:

if CF = 1 or ZF = 1 then jump

Example:

include 'emu8086.inc'

ORG 100h

MOV AL, 2

CMP AL, 5

JNA label1

PRINT 'AL is above 5.'

JMP exit

label1:

PRINT 'AL is not above 5.'

exit:

RET

C Z S O P A

unchanged

JNAE label Short Jump if first operand is Not Above and Not Equal to second operand (as set by CMP instruction). Unsigned.

Algorithm:

if CF = 1 then jump

Example:

include 'emu8086.inc'

ORG 100h

MOV AL, 2

CMP AL, 5

JNAE label1

PRINT 'AL >= 5.'

JMP exit

label1:

PRINT 'AL < 5.'

exit:

RET

C Z S O P A

unchanged

JNB label Short Jump if first operand is Not Below second operand (as set by CMP instruction). Unsigned.

Algorithm:

if CF = 0 then jump

Example:

include 'emu8086.inc'

ORG 100h

MOV AL, 7

CMP AL, 5

JNB label1

PRINT 'AL < 5.'

JMP exit

label1:

PRINT 'AL >= 5.'

exit:

RET

C Z S O P A

unchanged

JNBE label Short Jump if first operand is Not Below and Not Equal to second operand (as set by CMP instruction). Unsigned.

Algorithm:

if (CF = 0) and (ZF = 0) then jump

Example:

include 'emu8086.inc'

ORG 100h

MOV AL, 7

CMP AL, 5

JNBE label1

PRINT 'AL <= 5.'

JMP exit

label1:

PRINT 'AL > 5.'

exit:

RET

C Z S O P A

unchanged

JNC label Short Jump if Carry flag is set to 0.

Algorithm:

if CF = 0 then jump

Example:

include 'emu8086.inc'

ORG 100h

MOV AL, 2

ADD AL, 3

JNC label1

PRINT 'has carry.'

JMP exit

label1:

PRINT 'no carry.'

exit:

RET

C Z S O P A

unchanged

JNE label Short Jump if first operand is Not Equal to second operand (as set by CMP instruction). Signed/Unsigned.

Algorithm:

if ZF = 0 then jump

Example:

include 'emu8086.inc'

ORG 100h

MOV AL, 2

CMP AL, 3

JNE label1

PRINT 'AL = 3.'

JMP exit

label1:

PRINT 'Al <> 3.'

exit:

RET

C Z S O P A

unchanged

JNG label Short Jump if first operand is Not Greater then second operand (as set by CMP instruction). Signed.

Algorithm:

if (ZF = 1) and (SF <> OF) then jump

Example:

include 'emu8086.inc'

ORG 100h

MOV AL, 2

CMP AL, 3

JNG label1

PRINT 'AL > 3.'

JMP exit

label1:

PRINT 'Al <= 3.'

exit:

RET

C Z S O P A

unchanged

JNGE label Short Jump if first operand is Not Greater and Not Equal to second operand (as set by CMP instruction). Signed.

Algorithm:

if SF <> OF then jump

Example:

include 'emu8086.inc'

ORG 100h

MOV AL, 2

CMP AL, 3

JNGE label1

PRINT 'AL >= 3.'

JMP exit

label1:

PRINT 'Al < 3.'

exit:

RET

C Z S O P A

unchanged

JNL label Short Jump if first operand is Not Less then second operand (as set by CMP instruction). Signed.

Algorithm:

if SF = OF then jump

Example:

include 'emu8086.inc'

ORG 100h

MOV AL, 2

CMP AL, -3

JNL label1

PRINT 'AL < -3.'

JMP exit

label1:

PRINT 'Al >= -3.'

exit:

RET

C Z S O P A

unchanged

JNLE label Short Jump if first operand is Not Less and Not Equal to second operand (as set by CMP instruction). Signed.

Algorithm:

if (SF = OF) and (ZF = 0) then jump

Example:

include 'emu8086.inc'

ORG 100h

MOV AL, 2

CMP AL, -3

JNLE label1

PRINT 'AL <= -3.'

JMP exit

label1:

PRINT 'Al > -3.'

exit:

RET

C Z S O P A

unchanged

JNO label Short Jump if Not Overflow.

Algorithm:

if OF = 0 then jump

Example:

; -5 - 2 = -7 (inside -128..127)

; the result of SUB is correct,

; so OF = 0:

include 'emu8086.inc'

ORG 100h

MOV AL, -5

SUB AL, 2 ; AL = 0F9h (-7)

JNO label1

PRINT 'overflow!'

JMP exit

label1:

PRINT 'no overflow.'

exit:

RET

C Z S O P A

unchanged

JNP label Short Jump if No Parity (odd). Only 8 low bits of result are checked. Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.

Algorithm:

if PF = 0 then jump

Example:

include 'emu8086.inc'

ORG 100h

MOV AL, 00000111b ; AL = 7

OR AL, 0 ; just set flags.

JNP label1

PRINT 'parity even.'

JMP exit

label1:

PRINT 'parity odd.'

exit:

RET

C Z S O P A

unchanged

JNS label Short Jump if Not Signed (if positive). Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.

Algorithm:

if SF = 0 then jump

Example:

include 'emu8086.inc'

ORG 100h

MOV AL, 00000111b ; AL = 7

OR AL, 0 ; just set flags.

JNS label1

PRINT 'signed.'

JMP exit

label1:

PRINT 'not signed.'

exit:

RET

C Z S O P A

unchanged

JNZ label Short Jump if Not Zero (not equal). Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.

Algorithm:

if ZF = 0 then jump

Example:

include 'emu8086.inc'

ORG 100h

MOV AL, 00000111b ; AL = 7

OR AL, 0 ; just set flags.

JNZ label1

PRINT 'zero.'

JMP exit

label1:

PRINT 'not zero.'

exit:

RET

C Z S O P A

unchanged

JO label Short Jump if Overflow.

Algorithm:

if OF = 1 then jump

Example:

; -5 - 127 = -132 (not in -128..127)

; the result of SUB is wrong (124),

; so OF = 1 is set:

include 'emu8086.inc'

org 100h

MOV AL, -5

SUB AL, 127 ; AL = 7Ch (124)

JO label1

PRINT 'no overflow.'

JMP exit

label1:

PRINT 'overflow!'

exit:

RET

C Z S O P A

unchanged

JP label Short Jump if Parity (even). Only 8 low bits of result are checked. Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.

Algorithm:

if PF = 1 then jump

Example:

include 'emu8086.inc'

ORG 100h

MOV AL, 00000101b ; AL = 5

OR AL, 0 ; just set flags.

JP label1

PRINT 'parity odd.'

JMP exit

label1:

PRINT 'parity even.'

exit:

RET

C Z S O P A

unchanged

JPE label Short Jump if Parity Even. Only 8 low bits of result are checked. Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.

Algorithm:

if PF = 1 then jump

Example:

include 'emu8086.inc'

ORG 100h

MOV AL, 00000101b ; AL = 5

OR AL, 0 ; just set flags.

JPE label1

PRINT 'parity odd.'

JMP exit

label1:

PRINT 'parity even.'

exit:

RET

C Z S O P A

unchanged

JPO label Short Jump if Parity Odd. Only 8 low bits of result are checked. Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.

Algorithm:

if PF = 0 then jump

Example:

include 'emu8086.inc'

ORG 100h

MOV AL, 00000111b ; AL = 7

OR AL, 0 ; just set flags.

JPO label1

PRINT 'parity even.'

JMP exit

label1:

PRINT 'parity odd.'

exit:

RET

C Z S O P A

unchanged

JS label Short Jump if Signed (if negative). Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.

Algorithm:

if SF = 1 then jump

Example:

include 'emu8086.inc'

ORG 100h

MOV AL, 10000000b ; AL = -128

OR AL, 0 ; just set flags.

JS label1

PRINT 'not signed.'

JMP exit

label1:

PRINT 'signed.'

exit:

RET

C Z S O P A

unchanged

JZ label Short Jump if Zero (equal). Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.

Algorithm:

if ZF = 1 then jump

Example:

include 'emu8086.inc'

ORG 100h

MOV AL, 5

CMP AL, 5

JZ label1

PRINT 'AL is not equal to 5.'

JMP exit

label1:

PRINT 'AL is equal to 5.'

exit:

RET

C Z S O P A

unchanged

LAHF No operands Load AH from 8 low bits of Flags register.

Algorithm:

AH = flags register

AH bit: 7 6 5 4 3 2 1 0

[SF] [ZF] [0] [AF] [0] [PF] [1] [CF]

bits 1, 3, 5 are reserved.

C Z S O P A

unchanged

LDS REG, memory Load memory double word into word register and DS.

Algorithm:

REG = first word

DS = second word

Example:

ORG 100h

LDS AX, m

RET

m DW 1234h

DW 5678h

END

AX is set to 1234h, DS is set to 5678h.

C Z S O P A

unchanged

LEA REG, memory Load Effective Address.

Algorithm:

REG = address of memory (offset)

Example:

MOV BX, 35h

MOV DI, 12h

LEA SI, [BX+DI] ; SI = 35h + 12h = 47h

Note: The integrated 8086 assembler automatically replaces LEA with a more efficient MOV where possible. For example:

org 100h

LEA AX, m ; AX = offset of m

RET

m dw 1234h

END

C Z S O P A

unchanged

LES REG, memory Load memory double word into word register and ES.

Algorithm:

REG = first word

ES = second word

Example:

ORG 100h

LES AX, m

RET

m DW 1234h

DW 5678h

END

AX is set to 1234h, ES is set to 5678h.

C Z S O P A

unchanged

LODSB No operands Load byte at DS:[SI] into AL. Update SI.

Algorithm:

AL = DS:[SI]

if DF = 0 then

SI = SI + 1

else

SI = SI - 1

Example:

ORG 100h

LEA SI, a1

MOV CX, 5

MOV AH, 0Eh

m: LODSB

INT 10h

LOOP m

RET

a1 DB 'H', 'e', 'l', 'l', 'o'

C Z S O P A

unchanged

LODSW No operands Load word at DS:[SI] into AX. Update SI.

Algorithm:

AX = DS:[SI]

if DF = 0 then

SI = SI + 2

else

SI = SI - 2

Example:

ORG 100h

LEA SI, a1

MOV CX, 5

REP LODSW ; finally there will be 555h in AX.

RET

a1 dw 111h, 222h, 333h, 444h, 555h

C Z S O P A

unchanged

LOOP label Decrease CX, jump to label if CX not zero.

Algorithm:

CX = CX - 1

if CX <> 0 then

jump

else

no jump, continue

Example:

include 'emu8086.inc'

ORG 100h

MOV CX, 5

label1:

PRINTN 'loop!'

LOOP label1

RET

C Z S O P A

unchanged

LOOPE label Decrease CX, jump to label if CX not zero and Equal (ZF = 1).

Algorithm:

CX = CX - 1

if (CX <> 0) and (ZF = 1) then

jump

else

no jump, continue

Example:

; Loop until result fits into AL alone,

; or 5 times. The result will be over 255

; on third loop (100+100+100),

; so loop will exit.

include 'emu8086.inc'

ORG 100h

MOV AX, 0

MOV CX, 5

label1:

PUTC '*'

ADD AX, 100

CMP AH, 0

LOOPE label1

RET

C Z S O P A

unchanged

LOOPNE label Decrease CX, jump to label if CX not zero and Not Equal (ZF = 0).

Algorithm:

CX = CX - 1

if (CX <> 0) and (ZF = 0) then

jump

else

no jump, continue

Example:

; Loop until '7' is found,

; or 5 times.

include 'emu8086.inc'

ORG 100h

MOV SI, 0

MOV CX, 5

label1:

PUTC '*'

MOV AL, v1[SI]

INC SI ; next byte (SI=SI+1).

CMP AL, 7

LOOPNE label1

RET

v1 db 9, 8, 7, 6, 5

C Z S O P A

unchanged

LOOPNZ label Decrease CX, jump to label if CX not zero and ZF = 0.

Algorithm:

CX = CX - 1

if (CX <> 0) and (ZF = 0) then

jump

else

no jump, continue

Example:

; Loop until '7' is found,

; or 5 times.

include 'emu8086.inc'

ORG 100h

MOV SI, 0

MOV CX, 5

label1:

PUTC '*'

MOV AL, v1[SI]

INC SI ; next byte (SI=SI+1).

CMP AL, 7

LOOPNZ label1

RET

v1 db 9, 8, 7, 6, 5

C Z S O P A

unchanged

LOOPZ label Decrease CX, jump to label if CX not zero and ZF = 1.

Algorithm:

CX = CX - 1

if (CX <> 0) and (ZF = 1) then

jump

else

no jump, continue

Example:

; Loop until result fits into AL alone,

; or 5 times. The result will be over 255

; on third loop (100+100+100),

; so loop will exit.

include 'emu8086.inc'

ORG 100h

MOV AX, 0

MOV CX, 5

label1:

PUTC '*'

ADD AX, 100

CMP AH, 0

LOOPZ label1

RET

C Z S O P A

unchanged

MOV REG, memory

memory, REG

REG, REG

memory, immediate

REG, immediate

SREG, memory

memory, SREG

REG, SREG

SREG, REG Copy operand2 to operand1.

The MOV instruction cannot:

set the value of the CS and IP registers.

copy value of one segment register to another segment register (should copy to general register first).

copy immediate value to segment register (should copy to general register first).

Algorithm:

operand1 = operand2

Example:

ORG 100h

MOV AX, 0B800h ; set AX = B800h (VGA memory).

MOV DS, AX ; copy value of AX to DS.

MOV CL, 'A' ; CL = 41h (ASCII code).

MOV CH, 01011111b ; CL = color attribute.

MOV BX, 15Eh ; BX = position on screen.

MOV [BX], CX ; w.[0B800h:015Eh] = CX.

RET ; returns to operating system.

C Z S O P A

unchanged

MOVSB No operands Copy byte at DS:[SI] to ES:[DI]. Update SI and DI.

Algorithm:

ES:[DI] = DS:[SI]

if DF = 0 then

SI = SI + 1

DI = DI + 1

else

SI = SI - 1

DI = DI - 1

Example:

ORG 100h

CLD

LEA SI, a1

LEA DI, a2

MOV CX, 5

REP MOVSB

RET

a1 DB 1,2,3,4,5

a2 DB 5 DUP(0)

C Z S O P A

unchanged

MOVSW No operands Copy word at DS:[SI] to ES:[DI]. Update SI and DI.

Algorithm:

ES:[DI] = DS:[SI]

if DF = 0 then

SI = SI + 2

DI = DI + 2

else

SI = SI - 2

DI = DI - 2

Example:

ORG 100h

CLD

LEA SI, a1

LEA DI, a2

MOV CX, 5

REP MOVSW

RET

a1 DW 1,2,3,4,5

a2 DW 5 DUP(0)

C Z S O P A

unchanged

MUL REG

memory

Unsigned multiply.

Algorithm:

when operand is a byte:

AX = AL * operand.

when operand is a word:

(DX AX) = AX * operand.

Example:

MOV AL, 200 ; AL = 0C8h

MOV BL, 4

MUL BL ; AX = 0320h (800)

RET

C Z S O P A

r ? ? r ? ?

CF=OF=0 when high section of the result is zero.

NEG REG

memory

Negate. Makes operand negative (two's complement).

Algorithm:

Invert all bits of the operand

Add 1 to inverted operand

Example:

MOV AL, 5 ; AL = 05h

NEG AL ; AL = 0FBh (-5)

NEG AL ; AL = 05h (5)

RET

C Z S O P A

NOP No operands No Operation.

Algorithm:

Do nothing

Example:

; do nothing, 3 times:

NOP

NOP

NOP

RET

C Z S O P A

unchanged

NOT REG

memory

Invert each bit of the operand.

Algorithm:

if bit is 1 turn it to 0.

if bit is 0 turn it to 1.

Example:

MOV AL, 00011011b

NOT AL ; AL = 11100100b

RET

C Z S O P A

unchanged

OR REG, memory

memory, REG

REG, REG

memory, immediate

REG, immediate Logical OR between all bits of two operands. Result is stored in first operand.

These rules apply:

1 OR 1 = 1

1 OR 0 = 1

0 OR 1 = 1

0 OR 0 = 0

Example:

MOV AL, 'A' ; AL = 01000001b

OR AL, 00100000b ; AL = 01100001b ('a')

RET

C Z S O P A

0 r r 0 r ?

OUT im.byte, AL

im.byte, AX

DX, AL

DX, AX Output from AL or AX to port.

First operand is a port number. If required to access port number over 255 - DX register should be used.

Example:

MOV AX, 0FFFh ; Turn on all

OUT 4, AX ; traffic lights.

MOV AL, 100b ; Turn on the third

OUT 7, AL ; magnet of the stepper-motor.

C Z S O P A

unchanged

POP REG

SREG

memory Get 16 bit value from the stack.

Algorithm:

operand = SS:[SP] (top of the stack)

SP = SP + 2

Example:

MOV AX, 1234h

PUSH AX

POP DX ; DX = 1234h

RET

C Z S O P A

unchanged

POPA No operands Pop all general purpose registers DI, SI, BP, SP, BX, DX, CX, AX from the stack.

SP value is ignored, it is Popped but not set to SP register).

Note: this instruction works only on 80186 CPU and later!

Algorithm:

POP DI

POP SI

POP BP

POP xx (SP value ignored)

POP BX

POP DX

POP CX

POP AX

C Z S O P A

unchanged

POPF No operands Get flags register from the stack.

Algorithm:

flags = SS:[SP] (top of the stack)

SP = SP + 2

C Z S O P A

popped

PUSH REG

SREG

memory

immediate Store 16 bit value in the stack.

Note: PUSH immediate works only on 80186 CPU and later!

Algorithm:

SP = SP - 2

SS:[SP] (top of the stack) = operand

Example:

MOV AX, 1234h

PUSH AX

POP DX ; DX = 1234h

RET

C Z S O P A

unchanged

PUSHA No operands Push all general purpose registers AX, CX, DX, BX, SP, BP, SI, DI in the stack.

Original value of SP register (before PUSHA) is used.

Note: this instruction works only on 80186 CPU and later!

Algorithm:

PUSH AX

PUSH CX

PUSH DX

PUSH BX

PUSH SP

PUSH BP

PUSH SI

PUSH DI

C Z S O P A

unchanged

PUSHF No operands Store flags register in the stack.

Algorithm:

SP = SP - 2

SS:[SP] (top of the stack) = flags

C Z S O P A

unchanged

RCL memory, immediate

REG, immediate

memory, CL

REG, CL Rotate operand1 left through Carry Flag. The number of rotates is set by operand2.

When immediate is greater then 1, assembler generates several RCL xx, 1 instructions because 8086 has machine code only for this instruction (the same principle works for all other shift/rotate instructions).

Algorithm:

shift all bits left, the bit that goes off is set to CF and previous value of CF is inserted to the right-most position.

Example:

STC ; set carry (CF=1).

MOV AL, 1Ch ; AL = 00011100b

RCL AL, 1 ; AL = 00111001b, CF=0.

RET

C O

OF=0 if first operand keeps original sign.

RCR memory, immediate

REG, immediate

memory, CL

REG, CL Rotate operand1 right through Carry Flag. The number of rotates is set by operand2.

Algorithm:

shift all bits right, the bit that goes off is set to CF and previous value of CF is inserted to the left-most position.

Example:

STC ; set carry (CF=1).

MOV AL, 1Ch ; AL = 00011100b

RCR AL, 1 ; AL = 10001110b, CF=0.

RET

C O

OF=0 if first operand keeps original sign.

REP chain instruction

Repeat following MOVSB, MOVSW, LODSB, LODSW, STOSB, STOSW instructions CX times.

Algorithm:

check_cx:

if CX <> 0 then

do following chain instruction

CX = CX - 1

go back to check_cx

else

exit from REP cycle

Z

REPE chain instruction

Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 1 (result is Equal), maximum CX times.

Algorithm:

check_cx:

if CX <> 0 then

do following chain instruction

CX = CX - 1

if ZF = 1 then:

go back to check_cx

else

exit from REPE cycle

else

exit from REPE cycle

example:

open cmpsb.asm from c:\emu8086\examples

Z

REPNE chain instruction

Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 0 (result is Not Equal), maximum CX times.

Algorithm:

check_cx:

if CX <> 0 then

do following chain instruction

CX = CX - 1

if ZF = 0 then:

go back to check_cx

else

exit from REPNE cycle

else

exit from REPNE cycle

Z

REPNZ chain instruction

Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 0 (result is Not Zero), maximum CX times.

Algorithm:

check_cx:

if CX <> 0 then

do following chain instruction

CX = CX - 1

if ZF = 0 then:

go back to check_cx

else

exit from REPNZ cycle

else

exit from REPNZ cycle

Z

REPZ chain instruction

Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 1 (result is Zero), maximum CX times.

Algorithm:

check_cx:

if CX <> 0 then

do following chain instruction

CX = CX - 1

if ZF = 1 then:

go back to check_cx

else

exit from REPZ cycle

else

exit from REPZ cycle

Z

RET No operands

or even immediate Return from near procedure.

Algorithm:

Pop from stack:

IP

if immediate operand is present: SP = SP + operand

Example:

ORG 100h ; for COM file.

CALL p1

ADD AX, 1

RET ; return to OS.

p1 PROC ; procedure declaration.

MOV AX, 1234h

RET ; return to caller.

p1 ENDP

C Z S O P A

unchanged

RETF No operands

or even immediate Return from Far procedure.

Algorithm:

Pop from stack:

IP

CS

if immediate operand is present: SP = SP + operand

C Z S O P A

unchanged

ROL memory, immediate

REG, immediate

memory, CL

REG, CL Rotate operand1 left. The number of rotates is set by operand2.

Algorithm:

shift all bits left, the bit that goes off is set to CF and the same bit is inserted to the right-most position.

Example:

MOV AL, 1Ch ; AL = 00011100b

ROL AL, 1 ; AL = 00111000b, CF=0.

RET

C O

OF=0 if first operand keeps original sign.

ROR memory, immediate

REG, immediate

memory, CL

REG, CL Rotate operand1 right. The number of rotates is set by operand2.

Algorithm:

shift all bits right, the bit that goes off is set to CF and the same bit is inserted to the left-most position.

Example:

MOV AL, 1Ch ; AL = 00011100b

ROR AL, 1 ; AL = 00001110b, CF=0.

RET

C O

OF=0 if first operand keeps original sign.

SAHF No operands Store AH register into low 8 bits of Flags register.

Algorithm:

flags register = AH

AH bit: 7 6 5 4 3 2 1 0

[SF] [ZF] [0] [AF] [0] [PF] [1] [CF]

bits 1, 3, 5 are reserved.

C Z S O P A

SAL memory, immediate

REG, immediate

memory, CL

REG, CL Shift Arithmetic operand1 Left. The number of shifts is set by operand2.

Algorithm:

Shift all bits left, the bit that goes off is set to CF.

Zero bit is inserted to the right-most position.

Example:

MOV AL, 0E0h ; AL = 11100000b

SAL AL, 1 ; AL = 11000000b, CF=1.

RET

C O

OF=0 if first operand keeps original sign.

SAR memory, immediate

REG, immediate

memory, CL

REG, CL Shift Arithmetic operand1 Right. The number of shifts is set by operand2.

Algorithm:

Shift all bits right, the bit that goes off is set to CF.

The sign bit that is inserted to the left-most position has the same value as before shift.

Example:

MOV AL, 0E0h ; AL = 11100000b

SAR AL, 1 ; AL = 11110000b, CF=0.

MOV BL, 4Ch ; BL = 01001100b

SAR BL, 1 ; BL = 00100110b, CF=0.

RET

C O

OF=0 if first operand keeps original sign.

SBB REG, memory

memory, REG

REG, REG

memory, immediate

REG, immediate Subtract with Borrow.

Algorithm:

operand1 = operand1 - operand2 - CF

Example:

STC

MOV AL, 5

SBB AL, 3 ; AL = 5 - 3 - 1 = 1

RET

C Z S O P A

SCASB No operands Compare bytes: AL from ES:[DI].

Algorithm:

AL - ES:[DI]

set flags according to result:

OF, SF, ZF, AF, PF, CF

if DF = 0 then

DI = DI + 1

else

DI = DI - 1

C Z S O P A

SCASW No operands Compare words: AX from ES:[DI].

Algorithm:

AX - ES:[DI]

set flags according to result:

OF, SF, ZF, AF, PF, CF

if DF = 0 then

DI = DI + 2

else

DI = DI - 2

C Z S O P A

SHL memory, immediate

REG, immediate

memory, CL

REG, CL Shift operand1 Left. The number of shifts is set by operand2.

Algorithm:

Shift all bits left, the bit that goes off is set to CF.

Zero bit is inserted to the right-most position.

Example:

MOV AL, 11100000b

SHL AL, 1 ; AL = 11000000b, CF=1.

RET

C O

OF=0 if first operand keeps original sign.

SHR memory, immediate

REG, immediate

memory, CL

REG, CL Shift operand1 Right. The number of shifts is set by operand2.

Algorithm:

Shift all bits right, the bit that goes off is set to CF.

Zero bit is inserted to the left-most position.

Example:

MOV AL, 00000111b

SHR AL, 1 ; AL = 00000011b, CF=1.

RET

C O

OF=0 if first operand keeps original sign.

STC No operands Set Carry flag.

Algorithm:

CF = 1

C

1

STD No operands Set Direction flag. SI and DI will be decremented by chain instructions: CMPSB, CMPSW, LODSB, LODSW, MOVSB, MOVSW, STOSB, STOSW.

Algorithm:

DF = 1

D

1

STI No operands Set Interrupt enable flag. This enables hardware interrupts.

Algorithm:

IF = 1

I

1

STOSB No operands Store byte in AL into ES:[DI]. Update DI.

Algorithm:

ES:[DI] = AL

if DF = 0 then

DI = DI + 1

else

DI = DI - 1

Example:

ORG 100h

LEA DI, a1

MOV AL, 12h

MOV CX, 5

REP STOSB

RET

a1 DB 5 dup(0)

C Z S O P A

unchanged

STOSW No operands Store word in AX into ES:[DI]. Update DI.

Algorithm:

ES:[DI] = AX

if DF = 0 then

DI = DI + 2

else

DI = DI - 2

Example:

ORG 100h

LEA DI, a1

MOV AX, 1234h

MOV CX, 5

REP STOSW

RET

a1 DW 5 dup(0)

C Z S O P A

unchanged

SUB REG, memory

memory, REG

REG, REG

memory, immediate

REG, immediate Subtract.

Algorithm:

operand1 = operand1 - operand2

Example:

MOV AL, 5

SUB AL, 1 ; AL = 4

RET

C Z S O P A

TEST REG, memory

memory, REG

REG, REG

memory, immediate

REG, immediate Logical AND between all bits of two operands for flags only. These flags are effected: ZF, SF, PF. Result is not stored anywhere.

These rules apply:

1 AND 1 = 1

1 AND 0 = 0

0 AND 1 = 0

0 AND 0 = 0

Example:

MOV AL, 00000101b

TEST AL, 1 ; ZF = 0.

TEST AL, 10b ; ZF = 1.

RET

C Z S O P

0 r r 0 r

XCHG REG, memory

memory, REG

REG, REG Exchange values of two operands.

Algorithm:

operand1 < - > operand2

Example:

MOV AL, 5

MOV AH, 2

XCHG AL, AH ; AL = 2, AH = 5

XCHG AL, AH ; AL = 5, AH = 2

RET

C Z S O P A

unchanged

XLATB No operands Translate byte from table.

Copy value of memory byte at DS:[BX + unsigned AL] to AL register.

Algorithm:

AL = DS:[BX + unsigned AL]

Example:

ORG 100h

LEA BX, dat

MOV AL, 2

XLATB ; AL = 33h

RET

dat DB 11h, 22h, 33h, 44h, 55h

C Z S O P A

unchanged

XOR REG, memory

memory, REG

REG, REG

memory, immediate

REG, immediate Logical XOR (Exclusive OR) between all bits of two operands. Result is stored in first operand.

These rules apply:

1 XOR 1 = 0

1 XOR 0 = 1

0 XOR 1 = 1

0 XOR 0 = 0

Example:

MOV AL, 00000111b

XOR AL, 00000010b ; AL = 00000101b

RET

C Z S O P A

0 r r 0 r ?

--------------------------------------------------------------------------------

copyright © 2005 emu8086.com

all rights reserved.

Bạn đang đọc truyện trên: Truyen247.Pro

Tags: #linhpro