Chào các bạn! Vì nhiều lý do từ nay Truyen2U chính thức đổi tên là Truyen247.Pro. Mong các bạn tiếp tục ủng hộ truy cập tên miền mới này nhé! Mãi yêu... ♥

: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong

4.3. Cơ chế hình thành hydrocarbure chưa cháy HC

4.3.1. Sự phát sinh hydrocarbure chưa cháy trong khí xả động đốt trong

Sự phát sinh hydrocarbure chưa cháy HC, hay nói một cách tổng quát hơn, sự hình

thành các sản phẩm hữu cơ, là do quá trình cháy không hoàn toàn hoặc do một bộ phận

hỗn hợp nằm ngoài khu vực lan tràn màng lửa. Điều này xảy ra do sự không đồng nhất của

hỗn hợp hoặc do sự dập tắt màng lửa ở khu vực gần thành hay trong các không gian chết,

nghĩa là ở khu vực có nhiệt độ thấp, khác với sự hình thành CO và NOx diễn ra trong pha

đồng nhất ở những khu vực có nhiệt độ cao.

HC bao gồm các thành phần hydrocarbure rất khác biệt, có độc tính khác nhau đối

với sức khỏe con người cũng như có tính phản ứng khác nhau trong quá trình biến đổi hóa

học trong bầu khí quyển. Thông thường HC chứa một bộ phận lớn méthane. Thêm vào đó,

chúng còn có các thành phần chứa oxygène có tính phản ứng cao hơn như aldehyde,

cetone, phenol, alcool... Nếu thành phần chứa carbon chỉ chiếm vài phần trăm trong HC

của động cơ đánh lửa cưỡng bức thì aldehyde có thể đạt đến 10% trong HC động cơ

Diesel và trong số aldehyde này, formaldehyde chiếm tới 20% tổng số thành phần chứa

carbon.

Những chất còn lại trong hỗn hợp sau khi màng lửa đi qua không phải là nguồn

phát sinh HC chính đo được trên đường xả của động cơ đốt trong. Hình 4.11 biểu diễn sự

biến thiên nồng độ các thành phần hydrocarbure theo góc quay trục khuỷu đo được trên

thành buồng cháy của động cơ một cylindre. Chúng ta thấy rằng, ngay khi màng lửa đi

qua, nồng độ HC đo được thấp hơn HC có mặt trong khí xả. Vào cuối chu trình, nồng độ

HC lại tăng lên. Thật vậy, khi màng lửa đã lan đến khu vực gần thành thì nó bị dập tắt và

chính HC thoát ra từ các vùng không bị cháy đóng vai trò chủ yếu trong việc làm tăng

nồng độ HC.

4.3.2. Cơ chế tôi màng lửa

Tôi màng lửa hay sự dập tắt màng lửa diễn ra khi nó tiếp xúc với thành buồng

cháy. Quá trình tôi màng lửa có thể xảy ra trong những điều kiện khác nhau: màng lửa bị

làm lạnh khi tiếp xúc với thành trong quá trình dịch chuyển hoặc màng lửa bị dập tắt trong

những không gian nhỏ liên thông với buồng cháy, chẳng hạn như khe hở giữa piston và

thành cylindre (hình 4.12).

Khi màng lửa bị tôi, nó giải phóng một lớp mỏng hỗn hợp chưa cháy hay cháy

không hoàn toàn trên các bề mặt tiếp xúc (culasse, piston, cylindre, soupape...) hay ở

những không gian chết.

Bề dày của vùng bị tôi phụ thuộc vào những yếu tố khác nhau: nhiệt độ và áp suất

của hỗn hợp khí, tốc độ lan tràn màng lửa, hệ số dẫn nhiệt, nhiệt dung riêng, tình trạng bề

mặt của thành buồng cháy, lớp muội than, nhiệt độ thành buồng cháy... Người ta có thể sử

dụng những công thức thực nghiệm để tính kích thước bé nhất của không gian chết để

màng lửa có thể đi qua mà không bị dập tắt.

Quá trình tôi màng lửa diễn ra theo hai giai đoạn: trong giai đoạn đầu, màng lửa bị

tắt khi nhiệt lượng hấp thụ vào thành buồng cháy cân bằng với nhiệt lượng do màng lửa

tỏa ra. Vài giây sau khi tôi, do diễn ra sự khuếch tán hay sự oxy hóa nên nồng độ HC tại

khu vực này nhỏ hơn nồng độ đo được khi tôi. Mặt khác, những hydrocarbure thoát ra

trong quá trình oxy hóa ban đầu do màng lửa bị dập tắt có thể bị oxy hóa trong quá trình

giãn nở hay thải.

Cuối cùng lớp dầu bôi trơn trên mặt gương cylindre có thể hấp thụ hydrocarbure,

nhất là các hydrocarbure trước khi bén lửa và thải HC ra hỗn hợp cháy trong kì giãn nở.

Quá trình hấp thụ và thải HC như vừa nêu đôi khi là nguồn phát sinh HC quan trọng trong

khí xả động cơ đốt trong.

Khí xả động cơ xăng thường có chứa từ 1000 đến 3000ppmC, tương ứng với

khoảng từ 1 đến 2,5% lượng nhiên liệu cung cấp cho động cơ. Như đã trình bày trên hình

1.1, nồng độ HC tăng nhanh theo độ đậm đặc của hỗn hợp. Tuy nhiên, khi độ đậm đặc của

hỗn hợp quá thấp, HC cũng tăng do sự bỏ lửa hay do sự cháy không hoàn toàn diễn ra ở

một số chu trình công tác. Sự hình thành HC trong động cơ đánh lửa cưỡng bức có thể

được giải thích theo các cơ chế sau đây (hình 4.13):

- Sự tôi màng lửa khi tiếp xúc với thành tạo ra một lớp hỗn hợp không bị bén lửa

trên mặt thành buồng cháy.

- Hỗn hợp chứa trong các không gian chết không cháy được do màng lửa bị dập

tắt.

- Hơi nhiên liệu hấp thụ vào lớp dầu bôi trơn trên mặt gương cylindre trong giai

đoạn nạp và nén và thải ra trong giai đoạn giãn nở và cháy.

- Sự cháy không hoàn toàn diễn ra ở một số chu trình làm việc của động cơ (cháy

cục bộ hay bỏ lửa) do sự thay đổi độ đậm đặc, thay đổi góc đánh lửa sớm hay hồi lưu khí

xả, đặc biệt khi gia giảm tốc độ.

Mặt khác, muội than trong buồng cháy cũng có thể gây ra sự gia tăng mức độ phát

sinh ô nhiễm do sự thay đổi các cơ chế trên đây. Tất cả những quá trình này (trừ trường

hợp bỏ lửa) làm gia tăng nồng độ HC chưa cháy ở gần thành buồng cháy chứ không phải

trong toàn bộ thể tích buồng cháy. Trong quá trình thải có thể xuất hiện hai đỉnh cực đại

của nồng độ HC: đỉnh thứ nhất tương ứng với đại bộ phận HC sinh ra trong quá trình cháy

chính, đỉnh thứ hai xuất hiện vào cuối kì thải ở thời điểm những bộ phận HC cuối cùng

thoát ra khỏi cylindre trong điều kiện lưu lượng khí xả đã giảm.

4.4.1. Tôi màng lửa trên thành buồng cháy

Bề dày của lớp bị tôi thay đổi từ 0,05 đến 0,4mm phụ thuộc vào chế độ tải của

động cơ. Khi tải càng thấp thì lớp bị tôi càng dày. Sự hiện diện của aldehyde dạng HCHO

hay CH3CHO trong lớp tôi chứng tỏ rằng khu vực lớp tôi là nơi diễn ra các phản ứng oxy

hóa ở nhiệt độ thấp. Sau khi màng lửa bị dập tắt, những phần tử HC có mặt trong lớp tôi

khuếch tán vào khối khí nhiệt độ cao trong buồng cháy và đại bộ phận bị oxy hóa.

Trạng thái bề mặt của thành buồng cháy cũng ảnh hưởng đến mức độ phát sinh

HC: nồng độ HC có thể giảm đi 14% trong trường hợp thành buồng cháy được đánh bóng

so với trường hợp thành buồng cháy ở dạng đúc thô. Lớp muội than gây ảnh hưởng đến

nồng độ HC tương tự như trường hợp thành buồng cháy nhám.

4.4.2. Ảnh hưởng của các không gian chết

Các không gian này được xem là nguyên nhân chủ yếu phát sinh HC. Các không

gian chết quan trọng nhất là các khe hở giới hạn giữa piston, segment và cylindre (hình

4.15). Những không gian chết khác bao gồm chân ren và không gian quanh cực trung tâm

của bougie, không gian quanh nấm và đế soupape, không gian giới hạn giữa nắp cylindre,

thân máy và đệm culasse. Ở thời điểm gia tăng áp suất trong quá trình nén, hỗn hợp nhiên

liệu-không khí bị đẩy vào các không gian chết. Do tỉ số giữa diện tích bề mặt và thể tích

của các không gian chết lớn nên lượng khí dồn vào đây được làm mát nhanh chóng. Trong

giai đoạn cháy, áp suất tiếp tục tăng và một bộ phận hỗn hợp mới lại được nén vào không

gian chết. Khi màng lửa lan đến các khu vực này, nó có thể lan tràn vào bên trong để đốt

cháy hỗn hợp này hoặc nó bị tôi ngay trước khi vào trong không gian chết. Khả năng

màng lửa bị tôi phụ thuộc vào dạng hình học của lối vào không gian chết, thành phần của

hỗn hợp chưa cháy và trạng thái nhiệt động học của nó. Thực nghiệm cho thấy sự tôi màng

lửa diễn ra khi khe hở giữa piston và cylindre nhỏ hơn 0,18mm. Sau khi màng lửa đến và

bị tôi, khí cháy lại chui vào không gian chết cho đến khi áp suất bắt đầu giảm. Khi áp suất

trong không gian chết trở nên lớn hơn áp suất trong cylindre, bộ phận khí chứa trong các

không gian này quay trở ngược lại cylindre.

Hình 4.15 thể hiện những không gian chết quan trọng nhất, đó là thể tích bao gồm

giữa piston, segment và thành cylindre. Nó bao gồm một loạt các thể tích nối liền nhau bởi

những khe hẹp như khe hở segment, không gian giới hạn giữa hai segment liên tiếp...

Dạng hình học của các không gian chết này thay đổi khi segment dịch chuyển trong rãnh

để che kín mặt trên hay mặt dưới rãnh segment. Các không gian chết vừa nêu có thể chứa

từ 5 đến 10% hỗn hợp trong cylindre và bộ phận hỗn hợp này không cháy được trong quá

trình cháy chính. Trong giai đoạn giãn nở, khi quay ngược lại cylindre, một bộ phận HC

chứa trong không gian chết bị oxy hóa, phần còn lại (hơn 50%) thoát ra ngoài theo khí xả.

Thực nghiệm cho thấy hơn 80% HC chứa trong sản phẩm cháy do các không gian chết của

nhóm piston-segment-cylindre gây ra; 13% lượng HC do không gian chết của đệm culasse

2% do không gian chết của bougie. Giảm khoảng cách giữa segment thứ nhất so với đỉnh

piston có thể làm giảm nồng độ HC từ 47 đến 74% so với giá trị bình thường tùy theo điều

kiện làm việc của động cơ.

Vị trí của nến đánh lửa cũng ảnh hưởng đến mức độ phát sinh HC; nếu nến đánh

lửa đặt gần các không gian chết thì trong không gian đó có chứa một bộ phận sản phẩm

cháy; ngược lại, nếu nến đánh lửa đặt xa thì không gian chết chứa chủ yếu hỗn hợp khí

chưa cháy. Trong nhiều trường hợp, sự chênh lệch nồng độ HC có thể đạt đến 20%.

Lọt khí carter là lượng khí lọt từ cylindre xuống carter trong quá trình nén và cháy

do sự không kín khít của segment. Lọt khí carter cũng là nguồn phát sinh HC nếu nó được

thải trực tiếp ra khí quyển. Ngày nay, ở hầu hết động cơ ô tô, lượng khí này được dẫn vào

đường nạp để tăng tính kinh tế và giảm mức độ phát sinh HC. Để lượng hỗn hợp chưa

cháy chứa trong các không gian chết không quay ngược lại buồng cháy, trong một số

trường hợp người ta có thể giảm độ kín khít của segment để lượng khí này lọt xuống carter

và bị đốt cháy khi quay vào lại cylindre theo đường nạp.

Vì vậy, việc thiết kế hợp lí buồng cháy, lựa chọn hợp lí dạng piston, segment, đệm

culasse để giảm các không gian chết, lựa chọn vị trí đặt bougie tốt sẽ làm giảm đáng kể

nồng độ HC trong khí xả.

4.4.3. Sự hấp thụ và giải phóng HC ở màng dầu bôi trơn

Pha dầu bôi trơn vào nhiên liệu, như trường hợp động cơ 2 kì, sẽ làm gia tăng mức

độ phát sinh HC. Khi pha thêm 5% dầu bôi trơn vào nhiên liệu thì nồng độ HC trong khí

xả có thể tăng gấp đôi hay gấp ba so với trường hợp động cơ làm việc với nhiên nhiên

không pha dầu bôi trơn.

Cơ chế làm tăng HC khi pha dầu bôi trơn vào nhiên liệu có thể giải thích như sau.

Trong giai đoạn nạp, màng dầu bôi trơn được tráng trên mặt gương cylindre ở trạng thái

bão hòa hơi hydrocarbon ở áp suất nạp. Khi cháy hết nhiên liệu, sự giải phóng hơi nhiên

liệu từ màng dầu bôi trơn vào khí cháy bắt đầu và đồng thời quá trình này tiếp tục trong kì

giãn nở và thải. Trong quá trình đó, một bộ phận hơi này sẽ hòa trộn với khí cháy ở nhiệt

độ cao và bị oxy hóa; một bộ phận khác hòa trộn với hỗn hợp khí cháy nhiệt độ thấp,

không bị oxy hóa, góp phần làm tăng HC. Luợng HC này tăng theo độ hòa tan của nhiên

liệu trong dầu bôi trơn.

Sự hiện diện của muội than trong buồng cháy cũng ảnh hưởng đến sự phát sinh

HC. Thực tế cho thấy HC có khuynh hướng gia tăng theo mức độ tiêu thụ dầu bôi trơn. Vì

vậy, lựa chọn dạng segment dầu hợp lý sẽ làm giảm mức độ tiêu thụ dầu bôi trơn đồng

thời làm giảm mức độ phát sinh HC.

4.4.4. Ảnh hưởng của chất lượng quá trình cháy

Sự dập tắt màng lửa khi nó lan đến gần thành là một trong những nguyên nhân làm

gia tăng HC trong khí xả động cơ. Màng lửa có thể bị tắt khi áp suất và nhiệt độ giảm

xuống nhanh. Hiện tượng này diễn ra ở chế độ không tải hay tải nhỏ và tốc độ thấp với

thành phần khí sót cao. Ngay cả khi động cơ được điều chỉnh tốt ở chế độ làm việc bình

thường, sự dập tắt màng lửa cũng diễn ra ở chế độ quá độ (gia tốc hay giảm tốc).

4.4.5. Ảnh hưởng của lớp muội than

Sự hình thành lớp muội than (oxyde chì đối với động cơ sử dụng nhiên liệu pha chì

hay là lớp than do dầu bôi trơn bị cháy) xuất hiện trong buồng cháy khi ô tô chạy được

khoảng vài ngàn cây số, cũng góp phần làm gia tăng HC.

Cơ chế làm tăng HC do sự hiện diện của muội than khá phức tạp. Sự hấp thụ và

giải phóng HC ở lớp muội than cũng giống như màng dầu. Mặt khác, nếu kích thước ban

đầu của các không gian chết hẹp, lớp bồ hóng làm giảm lượng hỗn hợp khí chưa cháy

chứa trong các không gian này vì vậy làm giảm HC. Ngược lại, nếu các không gian này

nguyên thủy đủ lớn, sự bám bồ hóng làm giảm tiết diện lối vào, tăng khả năng dập tắt

màng lửa do đó làm tăng mức độ phát sinh HC.

4.4.6. Ảnh hưởng của sự oxy hóa HC trong kì giãn nở và thải

Lượng hydrocarbure không tham gia vào quá trình cháy chính trong thực tế lớn

hơn nhiều so với lượng hydrocarbure đo được trong khí xả động cơ. Thật vậy, sau khi

thoát ra khỏi các không gian chết, nhiên liệu chưa cháy khuếch tán vào khối sản phẩm

cháy ở nhiệt độ cao và tại đây chúng bị oxy hóa một cách nhanh chóng. Sự oxy hóa này

càng thuận lợi khi lượng oxy trong sản vật cháy càng nhiều (hỗn hợp nghèo).

Hydrocarbure ở thể khí bị oxy hóa khi nó tồn tại trong môi trường có nhiệt độ khoảng

600°C (nhiệt độ thông thường của nấm soupape xả) ít nhất là 50ms. Lượng HC thải ra bao

gồm nhiên liệu chưa cháy hết và các sản phẩm cháy không hoàn toàn. Mặt khác, quá trình

oxy hóa cũng tiếp tục diễn ra trên đường xả làm giảm thêm nồng độ HC sau khi chúng

thoát ra khỏi buồng cháy. Vì vậy những điều kiện vận hành của động cơ làm gia tăng nhiệt

độ khí xả (hỗn hợp có độ đậm đặc xấp xỉ 1, động cơ làm việc với tốc độ cao, đánh lửa

muộn, tỉ số nén cao...) và thời gian tồn tại của hỗn hợp trong buồng cháy dài (tải thấp) sẽ

làm gia tăng tỉ lệ HC bị oxy hóa. Giảm góc đánh lửa sớm làm tăng nhiệt độ hỗn hợp khí ở

cuối quá trình giãn nở tạo điều kiện thuận lợi cho việc oxy hóa HC trên đường thải. Về

mặt kỹ thuật, để tăng khả năng oxy hóa HC trên đường thải cần làm giảm tổn thất nhiệt ở

soupape và cổ góp bằng cách gia tăng tiết diện lưu thông và cách nhiệt đoạn đầu đường

thải, chẳng hạn như phủ một lớp vật liệu gốm trên thành ống.

4.5. Trường hợp động cơ Diesel

4.5.1. Đặc điểm phát sinh HC trong quá trình cháy động cơ Diesel

Do nguyên lí làm việc của động cơ Diesel, thời gian lưu lại của nhiên liệu trong

buồng cháy ngắn hơn trong động cơ đánh lửa cưỡng bức nên thời gian dành cho việc hình

thành sản phẩm cháy không hoàn toàn cũng rút ngắn làm giảm thành phần hydrocarbure

cháy không hoàn toàn trong khí xả.

Do nhiên liệu Diesel chứa hydrocarbure có điểm sôi cao, nghĩa là khối lượng phân

tử cao, sự phân hủy nhiệt diễn ra ngay từ lúc phun nhiên liệu. Điều này là tăng tính phức

tạp của thành phần hydrocarbure cháy không hoàn toàn trong khí xả.

Quá trình cháy trong động cơ Diesel là một quá trình phức tạp, trong quá trình đó

diễn ra đồng thời sự bay hơi nhiên liệu và hòa trộn nhiên liệu với không khí và sản phẩm

cháy. Khi độ đậm đặc trung bình của hỗn hợp quá lớn hoặc quá bé đều làm giảm khả năng

tự cháy và lan tràn màng lửa. Trong trường hợp đó nhiên liệu sẽ được tiêu thụ từng phần

trong những phản ứng oxy hóa diễn ra chậm ở giai đoạn giãn nở sau khi hòa trộn thêm

không khí.

Chúng ta có thể chia ra hai khu vực đối với bộ phận nhiên liệu được phun vào

buồng cháy trong giai đoạn cháy trễ: khu vực hỗn hợp quá nghèo do pha trộn với không

khí quá nhanh và khu vực hỗn hợp quá giàu do pha trộn với không khí quá chậm. Trong

trường hợp đó, chủ yếu là khu vực hỗn hợp quá nghèo diễn ra sự cháy không hoàn toàn

Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong

53

còn khu vực hỗn hợp quá giàu sẽ tiếp tục cháy khi hòa trộn thêm không khí.

Đối với bộ phận nhiên liệu phun sau giai đoạn cháy trễ, sự oxy hóa nhiên liệu hay

các sản phẩm phân hủy nhiệt diễn ra nhanh chóng khi chúng dịch chuyển trong khối khí ở

nhiệt độ cao. Tuy nhiên sự hòa trộn không đồng đều có thể làm cho hỗn hợp quá giàu cục

bộ hay dẫn đến sự làm mát đột ngột làm tắt màng lửa, sinh ra các sản phẩm cháy không

hoàn toàn trong khí xả.

Mức độ phát sinh HC trong động cơ Diesel phụ thuộc nhiều vào điều kiện vận

hành; ở chế độ không tải hay tải thấp, nồng độ HC cao hơn ở chế độ đầy tải. Thêm vào đó,

khi thay đổi tải đột ngột có thể gây ra sự thay đổi mạnh các điều kiện cháy dẫn đến sự gia

tăng HC do những chu trình bỏ lửa.

Cuối cùng, khác với động cơ đánh lửa cưỡng bức, không gian chết trong động cơ

Diesel không gây ảnh hưởng quan trọng đến nồng độ HC trong khí xả vì trong quá trình

nén và giai đoạn đầu của quá trình cháy, các không gian chết chỉ chứa không khí và khí

sót. Ảnh hưởng của lớp dầu bôi trơn trên mặt gương cylindre, ảnh hưởng của lớp muội

than trên thành buồng cháy cũng như ảnh hưởng của sự tôi màng lửa đối với sự hình thành

HC trong động cơ Diesel cũng không đáng kể so với trường hợp động cơ đánh lửa cưỡng

bức.

4.5.2. Phát sinh HC trong trường hợp hỗn hợp quá nghèo

Sự phân bố không đồng đều nhiên liệu trong cylindre ngay lúc bắt đầu phun được

giới thiệu trên hình 4.16. Trong dòng xoáy lốc, sự tự cháy diễn ra trong khu vực có độ

đậm đặc hơi thấp hơn 1. Bộ phận nhiên liệu ở ngoài rìa tia nằm ngoài giới hạn dưới của sự

tự bén lửa do đó chúng không thể tự cháy cũng không thể duy trì màng lửa. Khu vực đó

chỉ có thể là vị trí sản sinh các phản ứng chậm dẫn đến sản phẩm cháy không hoàn toàn.

Do đó trong vùng này có mặt nhiên liệu chưa cháy hết, những sản vật phân giải từ nhiên

liệu, những sản phẩm oxy hóa cục bộ (CO, aldehyde và những oxyde khác) và một bộ

phận của những sản phẩm này có mặt trong khí xả. Tầm quan trọng của những

hydrocarbure chưa cháy từ những khu vực nghèo này phụ thuộc vào lượng nhiên liệu phun

vào động cơ trong thời kì cháy trễ, phụ thuộc vào tỉ lệ không khí kéo theo vào tia trong

giai đoạn này và những điều kiện lí hóa ảnh hưởng đến sự tự cháy trong cylindre.

Vì vậy nồng độ HC trong khí xả và độ dài của giai đoạn cháy trễ có quan hệ mật

thiết với nhau, hay nói cách khác mức độ phát sinh HC có liên quan đến chỉ số cetane của

nhiên liệu. Những thay đổi điều kiện vận hành của động cơ làm kéo dài thời kì cháy trễ sẽ

làm gia tăng nồng độ HC.

4.5.3. Phát sinh HC trong trường hợp hỗn hợp quá giàu

Có hai nguyên nhân dẫn đến sự phát sinh HC do hỗn hợp quá giàu. Nguyên nhân

thứ nhất do nhiên liệu rời khỏi vòi phun với tốc độ thấp và thời gian phun kéo dài. Nguồn

phát sinh HC chính trong trường hợp này là không gian chết ở mũi vòi phun và sự phun

rớt do sự đóng kim phun không dứt khoát. Nguyên nhân thứ hai là do sự thừa nhiên liệu

trong buồng cháy do hỗn hợp quá đậm.

Vào cuối giai đoạn phun, lỗ phun (không gian chết) ở mũi vòi phun chứa đầy nhiên

liệu. Trong giai đoạn cháy và giãn nở, nhiên liệu được sấy nóng và một bộ phận bốc hơi

thoát ra khỏi lỗ phun (ở pha lỏng và hơi) và đi vào cylindre với tốc độ thấp và hòa trộn

chậm với không khí, do đó chúng không bị đốt cháy trong giai đoạn cháy chính. Ở động

cơ phun trực tiếp, thời gian của giai đoạn cháy trễ bé, mức độ phát sinh HC tỉ lệ với thể

tích không gian chết ở mũi vòi phun. Tuy nhiên, không phải toàn bộ thể tích nhiên liệu

chứa trong không gian chết đều có mặt trong khí xả. Ví dụ 1mm3 không gian chết trong

buồng cháy động cơ phát sinh khoảng 350ppmC trong khí xả, trong khi đó 1mm3 nhiên

liệu cho 1660ppmC. Sự chênh lệch này là do một bộ phận hydrocarbure nặng tiếp tục lưu

lại trong vòi phun và một bộ phận hydrocarbure nhẹ bị oxy hóa khi thoát ra khỏi không

gian chết. Trong động cơ có buồng cháy dự bị cơ chế này cũng diễn ra tương tự nhưng với

mức độ thấp hơn.

Ở động cơ phun trực tiếp, hiện tượng nhả khói đen làm giới hạn khả năng tăng độ

đậm đặc trung bình của hỗn hợp ở chế độ toàn tải. Ở chế độ tải thấp, tốc độ phun bé và

lượng nhiên liệu phun vào nhỏ, do đó động lượng của tia phun bé làm giảm lượng không

khí kéo theo vào tia nên độ đậm đặc cục bộ rất cao. Trong điều kiện quá độ khi gia tốc,

hỗn hợp trong buồng cháy có thể rất đậm đặc. Trong trường hợp đó, dù tỉ lệ nhiên liệu-

không khí tổng quát trong toàn buồng cháy thấp nhưng độ đậm đặc cục bộ rất cao trong

giai đoạn giãn nở và thải. Khi độ đậm đặc cục bộ vượt quá 0,9 thì nồng độ HC sẽ gia tăng

đột ngột. Ảnh hưởng tương tự như vậy cũng diễn ra trong động cơ có buồng cháy dự bị.

Tuy nhiên cơ chế này chỉ gây ảnh hưởng đến nồng độ HC khi gia tốc và nó gây ảnh hưởng

đến nồng độ HC ít hơn khi hỗn hợp nghèo ở chế độ không tải hay tải thấp.

4.5.4. Phát sinh HC do tôi ngọn lửa và hỗn hợp không tự bốc cháy

Như động cơ đánh lửa cưỡng bức, sự tôi ngọn lửa diễn ra gần thành và đó chính là

nguồn phát sinh HC. Hiện tượng này phụ thuộc đặc biệt vào khu vực va chạm giữa tia

Chương 4: Cơ chế hình thành CO và HC trong quá trình cháy của động cơ đốt trong

55

nhiên liệu và thành buồng cháy. Sự bỏ lửa dẫn đến sự gia tăng mạnh nồng độ HC hiếm khi

xảy ra đối với động cơ làm việc bình thường. Nó chỉ diễn ra khi động cơ có tỉ số nén thấp

và phun trễ. Mặt khác, sự bỏ lửa cũng xảy ra khi khởi động động cơ Diesel ở trạng thái

nguội với sự hình thành khói trắng (chủ yếu là do những hạt nhiên liệu không cháy tạo

thành).

Bạn đang đọc truyện trên: Truyen247.Pro

Tags: