Chào các bạn! Vì nhiều lý do từ nay Truyen2U chính thức đổi tên là Truyen247.Pro. Mong các bạn tiếp tục ủng hộ truy cập tên miền mới này nhé! Mãi yêu... ♥

các hàm tài chính

Hàm PV()

Tính giá trị hiện tại (Present Value) của một khoản đầu tư.

Cú pháp: = PV(rate, nper, pmt, fv, type)

Rate : Lãi suất của mỗi kỳ (tính theo năm). Nếu trả lãi hằng tháng thì bạn chia lãi suất cho 12.

Ví dụ, nếu bạn kiếm được một khoản vay với lãi suất 10% mỗi năm, trả lãi hằng tháng, thì lãi suất hằng tháng sẽ là 10%/12, hay 0.83%; bạn có thể nhập 10%/12, hay 0.83%, hay 0.0083 vào công thức để làm giá trị cho rate.

Nper : Tổng số kỳ phải trả lãi (tính theo năm). Nếu số kỳ trả lãi là hằng tháng, bạn phải nhân nó với 12.

Ví dụ, bạn mua một cái xe với khoản trả góp 4 năm và phải trả lãi hằng tháng, thì số kỳ trả lãi sẽ là 4*12 = 48 kỳ; bạn có thể nhập 48 vào công thức để làm giá trị cho nper.

Pmt : Số tiền phải trả (hoặc gửi thêm vào) trong mỗi kỳ. Số tiền này sẽ không thay đổi trong suốt năm. Nói chung, pmt bao gồm tiền gốc và tiền lãi, không bao gồm lệ phí và thuế. Ví dụ, số tiền phải trả hằng tháng là $10,000 cho khoản vay mua xe trong 4 năm với lãi suất 12% một năm là $263.33; bạn có thể nhập -263.33 vào công thức làm giá trị cho pmt.

Nếu pmt = 0 thì bắt buộc phải có fv.

Fv : Giá trị tương lại. Với một khoản vay, thì nó là số tiền nợ gốc còn lại sau lần trả lãi sau cùng; nếu là một khoản đầu tư, thì nó là số tiền sẽ có được khi đáo hạn. Nếu bỏ qua fv, trị mặc định của fv sẽ là zero (0), và khi đó bắt buộc phải cung cấp giá trị cho pmt (xem thêm hàm FV)

Ví dụ, bạn muốn tiết kiệm $50,000 để trả cho một dự án trong 18 năm, thì $50,000 là giá trị tương lai này.

Type : Hình thức tính lãi:

= 0 : Tính lãi vào cuối mỗi kỳ (mặc định)

= 1 : Tính lãi vào đầu mỗi kỳ tiếp theo

Ví dụ:

Bạn muốn có một số tiền tiết kiệm là $3,000,000 sau 10 năm, biết rằng lãi suất ngân hàng là 8% một năm, vậy từ bây giờ bạn phải gửi vào ngân hàng bao nhiêu tiền ?

= PV(8%, 10, 0, 3000000) = $1,389,580.46

Hàm FV()

Tính giá trị tương lai (Future Value) của một khoản đầu tư có lãi suất cố định và được chi trả cố định theo kỳ với các khoản bằng nhau mỗi kỳ.

Cú pháp: = FV(rate, nper, pmt [, pv] [, type])

Rate : Lãi suất của mỗi kỳ (tính theo năm). Nếu trả lãi hằng tháng thì bạn chia lãi suất cho 12.

Ví dụ, nếu bạn kiếm được một khoản vay với lãi suất 10% mỗi năm, trả lãi hằng tháng, thì lãi suất hằng tháng sẽ là 10%/12, hay 0.83%; bạn có thể nhập 10%/12, hay 0.83%, hay 0.0083 vào công thức để làm giá trị cho rate.

Nper : Tổng số kỳ phải trả lãi (tính theo năm). Nếu số kỳ trả lãi là hằng tháng, bạn phải nhân nó với 12.

Ví dụ, bạn mua một cái xe với khoản trả góp 4 năm và phải trả lãi hằng tháng, thì số kỳ trả lãi sẽ là 4*12 = 48 kỳ; bạn có thể nhập 48 vào công thức để làm giá trị cho nper.

Pmt : Số tiền chi trả (hoặc gửi thêm vào) trong mỗi kỳ. Số tiền này sẽ không thay đổi theo số tiền trả hằng năm. Nói chung, pmt bao gồm tiền gốc và tiền lãi, không bao gồm lệ phí và thuế. Nếu pmt = 0 thì bắt buộc phải có pv.

Pv : Giá trị hiện tại (hiện giá), hoặc là tổng giá trị tương đương với một chuỗi các khoản phải trả trong tương lai. Nếu bỏ qua pv, trị mặc định của pv sẽ là zero (0), và khi đó bắt buộc phải cung cấp giá trị cho pmt (xem thêm hàm PV)

Type : Hình thức tính lãi:

= 0 : Tính lãi vào cuối mỗi kỳ (mặc định)

= 1 : Tính lãi vào đầu mỗi kỳ tiếp theo

Lưu ý:

RateNper phải sử dụng đơn vị tính toán nhất quán với nhau. Ví dụ: Với khoản vay trong 4 năm, lãi suất hằng năm là 10%, nếu trả lãi hằng tháng thì dùng 10%/12 cho rate và 4*12 cho nper; còn nếu trả lãi hằng năm thì dùng 10% cho rate và 4 cho nper.

Tất cả các đối số thể hiện số tiền mặt "mất đi" (như gửi tiết kiệm, mua trái phiếu...) cần phải được nhập với một số âm; còn các đối số thể hiện số tiền "nhận được" (như tiền lãi đã rút trước, lợi tức nhận được...) cần được nhập với số dương.

Ví dụ:

Một người gửi vào ngân hàng $10,000 với lãi suất 5% một năm, và trong các năm sau, mỗi năm gửi thêm vào $200, trong 10 năm. Vậy khi đáo hạn (10 năm sau), người đó sẽ có được số tiền là bao nhiêu ?

= FV(5%, 10, -200, -10000, 1) = $18,930.30

(ở đây dùng tham số type = 1, do mỗi năm gửi thêm, nên số lãi gộp phải tính vào đầu mỗi kỳ tiếp theo thì mới chính xác)

Hàm PMT()

Tính số tiền cố định và phải trả định kỳ đối với một khoản vay có lãi suất không đổi.

Cũng có thể dùng hàm này để tính số tiền cần đầu tư định kỳ (gửi tiết kiệm, chơi bảo hiểm..) để cuối cùng sẽ có một khoản tiền nào đó.

Cú pháp: = PMT(rate, nper, pv, fv, type)

Rate : Lãi suất của mỗi kỳ (tính theo năm). Nếu trả lãi hằng tháng thì bạn chia lãi suất cho 12.

Ví dụ, nếu bạn kiếm được một khoản vay với lãi suất 10% mỗi năm, trả lãi hằng tháng, thì lãi suất hằng tháng sẽ là 10%/12, hay 0.83%; bạn có thể nhập 10%/12, hay 0.83%, hay 0.0083 vào công thức để làm giá trị cho rate.

Nper : Tổng số kỳ phải trả lãi (tính theo năm). Nếu số kỳ trả lãi là hằng tháng, bạn phải nhân nó với 12.

Ví dụ, bạn mua một cái xe với khoản trả góp 4 năm và phải trả lãi hằng tháng, thì số kỳ trả lãi sẽ là 4*12 = 48 kỳ; bạn có thể nhập 48 vào công thức để làm giá trị cho nper.

Pv : Giá trị hiện tại (hiện giá), hoặc là tổng giá trị tương đương với một chuỗi các khoản phải trả trong tương lai; cũng có thể xem như số vốn ban đầu (xem thêm hàm PV)

Fv : Giá trị tương lại. Với một khoản vay, thì nó là số tiền nợ gốc còn lại sau lần trả lãi sau cùng; nếu là một khoản đầu tư, thì nó là số tiền sẽ có được khi đáo hạn. Nếu bỏ qua fv, trị mặc định của fv sẽ là zero (0) (xem thêm hàm FV)

Type : Hình thức chi trả:

= 0 : Chi trả vào cuối mỗi kỳ (mặc định)

= 1 : Chi trả vào đầu mỗi kỳ tiếp theo

Lưu ý:

RateNper phải sử dụng đơn vị tính toán nhất quán với nhau. Ví dụ: Với khoản vay trong 4 năm, lãi suất hằng năm là 10%, nếu chi trả hằng tháng thì dùng 10%/12 cho rate và 4*12 cho nper; còn nếu chi trả hằng năm thì dùng 10% cho rate và 4 cho nper.

Kết quả (số tiền) do hàm PMT() trả về bao gồm tiền gốc và tiền lãi, nhưng không bao gồm thuế và những khoản lệ phí khác (nếu có).

Nếu muốn chỉ tính số tiền gốc phải trả, ta dùng hàm PPMT(), còn nếu muốn chỉ tính số tiền lãi phải trả, dùng làm IPMT().

Ví dụ:

Bạn mua trả góp một căn hộ với giá $1,000,000,000, trả góp trong 30 năm, với lãi suất không đổi là 8% một năm trong suốt thời gian này, vậy mỗi tháng bạn phải trả cho người bán bao nhiêu tiền để sau 30 năm thì căn hộ đó thuộc về quyền sở hữu của bạn ?

= PMT(8%/12, 30*12, 1000000000) = $7,337,645/74

Ở công thức trên, đối số fv = 0, là do sau khi đã thanh toán xong khoản tiền cuối cùng, thì bạn không còn nợ nữa.

Nhưng ngó lại, và nhẩm một tí, ta sẽ thấy mua trả góp.. thành mua mắc gấp hơn 2 lần ! Không tin bạn thử lấy đáp số nhân với 12 tháng nhân với 30 xem..

Bạn muốn có một số tiền tiết kiệm là $50,000,000 sau 10 năm, biết rằng lãi suất (không đổi) của ngân hàng là 12% một năm, vậy từ bây giờ, hằng tháng bạn phải gửi vào ngân hàng bao nhiêu tiền ?

= PMT(12%/12, 10*12, 0, 50000000) = $217,354.74

Ở công thức trên, đối số pv = 0, là do ngay từ đầu, bạn không có đồng nào trong ngân hàng cả.

Hàm RATE()

Tính lãi suất của mỗi kỳ trong một niên kim (annuity), hay là tính lãi suất của mỗi kỳ của một khoản vay.

RATE() được tính bởi phép lặp và có thể có một hay nhiều kết quả. Nếu các kết quả của RATE() không thể hội tụ vào trong 0.0000001 sau 20 lần lặp, RATE() sẽ trả về giá trị lỗi #VALUE!

Cú pháp: = RATE(nper, pmt, pv, fv, type, guess)

Nper : Tổng số kỳ phải trả lãi (tính theo năm). Nếu số kỳ trả lãi là hằng tháng, bạn phải nhân nó với 12.

Ví dụ, bạn mua một cái xe với khoản trả góp 4 năm và phải trả lãi hằng tháng, thì số kỳ trả lãi sẽ là 4*12 = 48 kỳ; bạn có thể nhập 48 vào công thức để làm giá trị cho nper.

Pmt : Số tiền phải trả trong mỗi kỳ. Số tiền này sẽ không thay đổi trong suốt năm. Pmt bao gồm cả tiền gốc và tiền lãi (không bao gồm lệ phí và thuế). Ví dụ, số tiền phải trả hằng tháng là $10,000 cho khoản vay mua xe trong 4 năm với lãi suất 12% một năm là $263.33; bạn có thể nhập -263.33 vào công thức làm giá trị cho pmt.

Nếu bỏ qua pmt thì bắt buộc phải có fv.

Pv : Giá trị hiện tại (hiện giá), hoặc là tổng giá trị tương đương với một chuỗi các khoản phải trả trong tương lai.

Fv : Giá trị tương lại. Với một khoản vay, thì nó là số tiền nợ gốc còn lại sau lần trả lãi sau cùng; nếu là một khoản đầu tư, thì nó là số tiền sẽ có được khi đáo hạn. Nếu bỏ qua fv, trị mặc định của fv sẽ là zero (ví dụ, sau khi bạn đã thanh toán hết khoản vay thì số nợ của bạn sẽ bằng 0).

Type : Hình thức tính lãi:

= 0 : Tính lãi vào cuối mỗi kỳ (mặc định)

= 1 : Tính lãi vào đầu mỗi kỳ tiếp theo

Guess : Giá trị của lãi suất hằng năm (rate), do bạn dự đoán. Nếu bỏ qua, Excel sẽ mặc định cho guess = 10%.

Lưu ý:

Nếu RATE() báo lỗi #VALUE! (do không hội tụ), hãy thử với các giá trị khác cho guess.

Nper Guess phải sử dụng đơn vị tính toán nhất quán với nhau. Ví dụ: Với khoản vay trong 4 năm, lãi suất hằng năm là 10%, nếu chi trả hằng tháng thì dùng 10%/12 cho guess và 4*12 cho nper; còn nếu chi trả hằng năm thì dùng 10% cho guess và 4 cho nper.

Ví dụ:

Giả sử bạn muốn vay trả góp $8,000,000 trong 4 năm, nhân viên ngân hàng sau một hồi tính toán, phán rằng mỗi tháng bạn phải trả cả gốc lẫn lãi là $200,000. Vậy ngân hàng đó tính lãi suất hằng tháng (hoặc lãi suất hằng năm) cho bạn là bao nhiêu ?

Lãi suất hằng tháng (dự đoán lãi suất là 10%/năm):

= RATE(4*12, -200000, 8000000) = 1%

Lãi suất hằng năm (dự đoán lãi suất là 10%/năm):

= RATE(4*12, -200000, 8000000)*12 = 9.24%

Tính lãi suất mỗi năm cho một khoản vay $1,000 trong 2 năm, mỗi năm phải trả $100, khi đáo hạn phải trả cả gốc lẫn lãi là $1,200 ?

= RATE(2, -100, 1000, -1200) = 19%

Hàm NPER()

Tính số kỳ hạn để trả một khoản vay có lãi suất không đổi và thanh toán theo định kỳ với các khoản thanh toán bằng nhau mỗi kỳ.

Cũng có thể dùng hàm này để tính số kỳ hạn gửi vào cho một khoản đầu tư có lãi suất không đổi, tính lãi theo định kỳ và số tiển gửi vào bằng nhau mỗi kỳ (Vd: đầu tư vào việc mua bảo hiểm nhân thọ của Prudential chẳng hạn)

Cú pháp: = NPER(rate, pmt, pv, fv, type)

Rate : Lãi suất của mỗi kỳ (tính theo năm). Nếu trả lãi hằng tháng thì bạn chia lãi suất cho 12.

Ví dụ, nếu bạn có một khoản vay với lãi suất 10% mỗi năm, trả lãi hằng tháng, thì lãi suất hằng tháng sẽ là 10%/12, hay 0.83%; bạn có thể nhập 10%/12, hay 0.83%, hay 0.0083 vào công thức để làm giá trị cho rate.

Pmt : Số tiền phải trả trong mỗi kỳ. Số tiền này sẽ không thay đổi trong suốt năm. Pmt bao gồm cả tiền gốc và tiền lãi (không bao gồm lệ phí và thuế). Ví dụ, số tiền phải trả hằng tháng là $10,000 cho khoản vay mua xe trong 4 năm với lãi suất 12% một năm là $263.33; bạn có thể nhập -263.33 vào công thức làm giá trị cho pmt.

Nếu pmt = 0 thì bắt buộc phải có fv.

Pv : Giá trị hiện tại (hiện giá), hoặc là tổng giá trị tương đương với một chuỗi các khoản phải trả trong tương lai.

Fv : Giá trị tương lại. Với một khoản vay, thì nó là số tiền nợ gốc còn lại sau lần trả lãi sau cùng; nếu là một khoản đầu tư, thì nó là số tiền sẽ có được khi đáo hạn. Nếu bỏ qua fv, trị mặc định của fv sẽ là zero (ví dụ, sau khi bạn đã thanh toán hết khoản vay thì số nợ của bạn sẽ bằng 0).

Type : Hình thức tính lãi:

= 0 : Tính lãi vào cuối mỗi kỳ (mặc định)

= 1 : Tính lãi vào đầu mỗi kỳ tiếp theo

Ví dụ:

Có một căn hộ bán trả góp theo hình thức sau: Giá trị của căn hộ là $500,000,000, trả trước 30%, số còn lại được trả góp $3,000,000 mỗi tháng (bao gồm cả tiền nợ gốc và lãi), biết lãi suất là 12% một năm, vậy bạn phải trả trong bao nhiêu năm thì mới xong ?

Ta đi tìm các đối số cho hàm NPER:

Giá trị căn hộ = $500,000,000 = fv

Trả trước 30% = - $500,000,000*30% = pv

Số tiền trả góp hằng tháng = - $3,000,000 = pmt

Lãi suất = 12%/năm, do số tiền trả góp là hằng tháng nên phải quy lãi suất ra tháng, tức rate = 12%/12

Vậy ta có công thức:

= NPER(12%/12, -3000000, -500000000*30%, 500000000) = 58 (tháng) hay là 4.82 năm

Thử kiểm tra lại với hàm PMT, nghĩa là coi như chưa biết mỗi tháng phải trả góp bao nhiêu tiền, nhưng biết là phải trả trong 58 tháng:

= PMT(12%/12, 58, -500000000*30%, 500000000) = $2,982,004

Đáp số không thể chính xác = $3,000,000 vì con số 58 (tháng) ở trên là con số làm tròn. Nếu bạn lấy đáp số của công thức NPER (chưa làm tròn) ở trên làm tham số nper cho hàm PMT ở dưới, bạn sẽ có đáp số chính xác là $3,000,000

Bạn đang đọc truyện trên: Truyen247.Pro

Tags: