analyse des donnee
Principe de l’AFC
Le principe de l'AFC consiste à réaliser une ACP en faisant tenir aux modalités de X et Y le rôle d'individus et de variables.
L'ajustement du nuage de points est analogue à celui des individus en ACP, à ceci près que
la distance entre profils est mesurée à l'aide de la mesure du x².
Interprétation
On peut montrer que, à un coefficient multiplicatif près, la projection de la modalité i de la première variable est le barycentre des projections des modalités de la deuxième variable, et inversement.
Alors : la proximité de deux modalités d’une même variable signifie qu’elles ont des profils voisins,
la proximité de deux modalités de variables différentes est l’indice d’une attirance (attention, aucune distance n’est définie entre les modalités de variables différentes),
Principe de l’ACP
On cherche un ensemble d’axes factoriels (les composantes principales) qui, pris deux à deux, définissent des plans (2D). Les axes doivent être choisis de manière à déformer le moins possible la structure du nuage, à l'étendre le plus possible. Pour chaque point, on cherche à minimiser les distances entre le point et ses projections sur les axes factoriels.
Etude des individus:
Un individu est bien représenté si le cosinus carré de sa projection sur l’axe est élevé. On étudie la répartition générale des individus bien représentés. Toute plage de très faible densité ou de très forte concentration doit être détectée. Cette étude permet souvent de dégager les principaux groupes d'individus.
La régression linéaire simple
Avant tout calcul, il est préférable de représenter graphiquement le nuage de points (ens. des couples (xi, yi)) pour avoir une idée de la famille de fonctions à choisir. C'est le diagramme de dispersion(figures cidessous).
Quand l'ensemble de points est à peu près aligné, on cherche à trouver une relation linéaire entre ces variables X et Y, de la forme Y=aX+b (équation d'une droite). Il faut donc un critère pour choisir l'une des droites possibles.
Le critère des moindres carrés est celui de la recherche du minimum de la somme des carrés des écarts ei entre la valeur ŷi calculée avec l'équation de la droite et la valeur observée yi :a et b sont tels que ... soit minimum
L'écart ei. est appelé écart résiduel ou résidu.
Significativité du test du khi 2
La significativité est la probabilité pour que la valeur calculée du x² soit dépassée.
Quand les logiciels ne permettent pas de donner la valeur du seuil critique, ils donnent la valeur de
la significativité. Alors, au lieu de comparer le x² au x2 (alphaà, v , on compare la valeur de la
significativité et le risque (alpha)que l'on se fixe.
Conditions d’application du test :
1) l’échantillon doit être prélevé au hasard dans la population
2) les effectifs théoriques de chaque case doivent être de 5 au moins.
Le déroulement
On pose les hypothèses :
H0 : Les deux variables sont indépendantes
H1 : Les deux variables ne sont pas indépendantes
On suppose H0 vraie.
Le diagramme de dispersion est la représentation graphiquement du nuage de points (ens. Des coupes (xi, yi)) pour avoir une idée de la famille de fonction à choisir.
Analyse des résidus permet de déceler d’éventuelles sources de variation que le modèle n’aurait pas prises en compte. Permet aussi d’identifier les résidus importants correspondent à des observations qui s’écartent du modèle
Bạn đang đọc truyện trên: Truyen247.Pro